

JAI HIND COLLEGE BASANTSING INSTITUTE OF SCIENCE & J.T.LALVANI COLLEGE OF COMMERCE (AUTONOMOUS) "A" Road, Churchgate, Mumbai - 400 020, India.

Affiliated to University of Mumbai

Program : B.Sc.

Proposed Course : Microbiology

Semester III

Credit Based Semester and Grading System (CBCS) with effect from the academic year 2020 -21

S.Y.B.Sc. Microbiology Syllabus

Academic year 2020-2021

Semester III				
Course Code	Course Title	Credits	s Lectures /Week	
SMIC301	Essentials of Molecular Biology	3	3	
UNIT 1	Principles of Inheritance	1000		
UNIT 2	Molecular techniques based on nucleic acids			
UNIT 3	Replication in prokaryotes & eukaryotes			
SMIC302	Research methodology, Biostatistics and Analytical techniques	3	3	
UNIT 1	Estimation of biomolecules and Instrumentation-I	N.		
UNIT 2	Instrumentation-II			
UNIT 3	Research methodology and Biostatistics			
SMIC303	Environmental and Applied Microbiology	3	3	
UNIT 1	Aeromicrobiology and Soil microbiology		S-7.	
UNIT 2	Aquatic and Wastewater Microbiology		E. (
UNIT 3	Applied Microbiology		4	
SMIC3PR	Practical	2.5	9	

SEMESTER III – THEORY

Course: SMIC301	Course Title: Essentials of Molecular Biology (Credits:03 Lectures/Week:03)	
Learning Objectives:	 To understand genetics and the principles of inheritance of gen To learn and apply the principles of molecular techniques base To understand the events occurring in both Prokaryotic and Eu DNA replication, with a focus on the involvement of proteins enzymes at the cellular level 	netic traits ed on DNA Ikaryotic and
Outcomes:	 On completion of this course, students will learn about: Branches of genetics Principles of inheritance Process of DNA replication Techniques used in molecular biology 	
Unit I	Principles of Inheritance	15 L
1.1	Introduction to genetics: a. Classical and Modern genetics b. Sub disciplines of genetics	01
1.2	Structural organization of chromosomes a. Prokaryotic chromosomes b. Eukaryotic chromosomes: i. Packaging DNA molecules into chromosomes ii. Concept of euchromatin & heterochromatin iii. Centromeric and Telomeric DNA iv. Unique sequence and Repetitive sequence DNA	04
1.3	Mendelian Genetics: a. Monohybrid crosses and Mendel's principle of Segregation b. Dihybrid crosses and Mendel's principle of Independent Assortment c. Trihybrid crosses a. Mendelian genetics in humans and pedigree analysis	07
1.4	Population Genetics: a. Genetic structure of population b. Hardy Weinberg Law	03
Unit II	Molecular techniques based on nucleic acids	15 L
2.1	 a. Extraction, Purification of DNA b. Detection of DNA: Density gradient centrifugation, Gel electrophoresis 	02

2.2	Labelling of DNA	02
	a. Radioactive and Nonradioactive labelling	
	b. End labelling and Random primer labelling	
2.3	Denaturation and Hybridization of Nucleic acids	
	a. Factors affecting denaturation and hybridization of Nucleic	
	Acids	
	b. Blotting Techniques: Southern Blotting, Nothern Blotting,	
	Dot blotting, Colony blotting	
2.4	Sequencing of DNA	03
	a. Maxam& Gilbert's Sequencing	
	b. Sanger's Sequencing	
	c. Autosequencing	
2.5	PCR: Principle and Application	02
2.6	FISH: Principle and Application	
Unit III	Replication in prokaryotes & eukaryotes	
3.1	Historical perspective- Conservative, dispersive, semi-conservative,	03
- 1	bidirectional and semi-discontinuous, Theta model of replication.	
3.2	Prokaryotic DNA replication - Details of molecular mechanisms	04
- 1	involved in Initiation, Elongation and Termination	
3.3	Enzymes and proteins associated with DNA replication-Primase,	03
	Helicase, Topoisomerase, SSB, DNA polymerases, Ligases, Ter and	
	Tus proteins	
3.4	Eukaryotic DNA replication - Molecular details of DNA synthesis,	04
	replicating the ends of the chromosomes, assembling newly	
	replicating the ends of the chromosomes, assembling newly replicated DNA into nucleosomes.	

(L)

Textbooks and Additional References:

- 1 Lehninger A. L., Nelson D. L. & Cox M. M. Lehninger principles of biochemistry, New York: Worth Publishers, 5th Ed., 2008.
- 2 Madigan M. T., Martinko J. M. Brock biology of microorganism, Upper Saddle River, NJ: Prentice Hall/Pearson Education, 8th Ed., 1997.
- 3 Russell P. J., iGenetics A Molecular approach, Pearson Education, Inc., 2nd Ed., 2006
- 4 Pierce B.A., Genetics a conceptual approach, W. H. Freeman and company, 3rd Ed., 2008.
- 5 Snustad S., Principles of genetics, John Wiley & sons, Inc., 3rd Ed., 2003.
- 6 Lewin B., Genes IX, Jones and Bartlett publishers, 2007.
- 7 Watson J.D., Molecular biology of the gene, Pearson Education Inc, 5th Ed., 2004.

Course:	Course Title: Research methodology, Biostatistics and Analytical			
SMIC302	techniques			
	(Credits:03 Lectures/Week:03)			
Learning	Learn and understand the principle and applications of methods	ised		
Objectives:	for estimation of biomolecules			
	To learn analytical techniques			
	To develop soft skills			
	> To appreciate the role played by biostatistics in analysis of biology data'			
Outcomes	On completion of this course, students will learn about:			
	Use of different Bioanalytical techniques			
	Searching for good research papers or doing good literature surv	ey		
100	Reading and presenting a research paper			
	Biostatistical analysis of data			
Unit I	Estimation of biomolecules and Instrumentation-I	15 L		
1.1	Macromolecular composition of a microbial cell	05		
	Methods of elemental analysis:	0		
	a. Carbon by Van-Slyke's method			
	b. Nitrogen by Microkjeldahl method.			
	c. Phosphorus by Fiske-Subbarow method			
	Estimation of Proteins and amino acids:			
	a. Proteins by Biuret method (Indirect)			
	b. Amino acids by Ninhydrin method			
	Estimation of Carbohydrates:			
	a. Total carbohydrates by Anthrone method			
	b. Reducing Sugars (maltose) by DNSA method			
	Extraction of Lipids by Soxhlet method			
	Estimation of Nucleic acids :			
	a. General principles and extraction of nucleic acids			
	b. DNA by DPA method			
	c. RNA by Orcinol method			
	(Only Principles And Applications To Be Discussed)			
1.2	Chromatographic techniques	10		
	a. General Principles			
	b. I ypes and applications: Partition, adsorption, ion exchange,			

Unit II	Instrumentation-II	15 L
2.1	Centrifugation	
	a. Introduction: basic principles of sedimentation	
	b. Preparative centrifugation & its applications	
	(Differential, Rate zonal, Isopycnic)	
	c. Density Gradient Centrifugation	
	d. Rotor Design, Selection and Care	
	e. Analytical centrifugation and its application	
2.2	Electrophoresis:	08
	a. General principles	
	b. Factors affecting electrophoresis	
	c. Support media: Agarose Gels & Polyacrylamide gels	
	d. Protein Electrophoresis: Native, SDS-PAGE, Isoelectric	
	Focussing gels, 2-D PAGE	
	e. Nucleic Acid electrophoresis: AGE	
Unit III	Research methodology and Biostatistics	15 L
3.1	Introduction to Research	02
	Methodology Define a research	
3.2	Problem Data Collection	02
3.2	Testing of Hypothesis	02
3.4	Scientific Writing Skills	01
3.5	Intellectual Property Rights	03
	a. Intellectual Property Rights (IPR) and Intellectual Property	
	Protection (IPP)	
	b. Rationale of Patents in Research and Scientific innovations	
	c. Requirements for Patentability	
	d. Categories of Biotechnological patents- process and products	
	(Discuss with examples of patents granted)	
	f Bioethical Conflicts	
3.6	Basics of Biostatistics	06
	a. Introduction to Biostatistics	
	b. Sample and Population	
	c Data presentation using computer softwares: Dot plot	
	Bar diagram Histogram Frequency curve	
	d Control Tondonov: (Maan Madian Mada) Salf study	
	a. Standard Deviation Variance	
	f Statistical tast: E tast t tast Chi square tast	
	 Bar diagram, Histogram, Frequency curve. d. Central Tendency: (Mean,Median, Mode) Self study. e. Standard Deviation, Variance f. Statistical test: F- test, t-test, Chi square test 	

Textbooks and Additional References:

- Norris J.R., Ribbons D.W., Methods In Microbiology Vol 5B, London: Academic Press, 1971.
- Jayaraman J., Laboratory Manual in Biochemistry. New Delhi: New Age International Publishers, 2003.
- Wilson K. & Walker J., Principles & techniques of Biochemistry & Molecular biology, Cambridge University press, 6th Ed., 2006.
- 4. Singh Y.K., Fundamental of Research Methodology and Statistics. New age international publishers, 2006.
- 5. Kothari C.R. & Garg G., Research methodology methods and techniques, New age international publishers, 3rd Ed., 2005.
- 6. Williams B.L. & Wilson K., A Biologist's guide to Principles and Techniques of Practical Biochemistry, American Elsevier Pub. Co. 1975.
- 7. Boyer R.F., Modern Experimental Biochemistry, Pearson publishers, 3rd Ed., 2012.
- Mahajan B.K., Methods in Biostatistics, Jaypee brothers medical publishers, 6thEd., 2006.
- 9. Dubey R.C, A Textbook of Biotechnology, S. Chand and Company, New Delhi, 2005.
- 10. Modi H.A, Fermentation Technology Vol: 2, Pointer Publications, India, 2009.

Course:	Course Title: Environmental and Industrial Microbiology		
SMIC303	(Credits:03 Lectures/Week:03)	45L	
Learning	> To learn role of microorganisms in improving the environment.	Study	
Objectives:	microbial flora of air and air sanitation methods		
U	Explore the types of microorganisms present in fresh water, pot	able	
	water and waste water.	c	
	Learn the methods to evaluate the water quality and processing	of	
	Sewage Understanding of microbial processes which may be applicable	to	
	biogeochemical cycling	10	
Outcomes:	On completion of this course, students will learn about:		
	> Microbes and their relation with environment, Microflora of air.	, water	
	and soil		
	Check potability of water		
	Role of microorganisms as biofertilizers and biopesticides		
	Bioremediation and bioleaching		
Unit I	Aeromicrobiology and Soil microbiology	15 L	
1.1	Aeromicrobiology:	07	
	Important airborne pathogens and toxins,		
	Aerosols, nature of bioaerosols, aeromicrobiological		
	pathway, microbial survival in the air, extramural aeromicrobiology,		
	intramural aeromicrobiology		
1.2	a. Sampling Devices for the Collection of Air Samples		
	b. Detection of microorganisms on fomites		
1.3	Air Sanitation		
1.4	Soil : Soil as microbial environment		
	Biotic and Abiotic stresses	01	
1.5	Microorganisms in surface soils – (Self Study)		
	Bacteria, Actinomycetes, Fungi, Algae, Protozoa		
1.6	Sampling strategies and methods for : Surface and Subsurface soil	01	
1.7	Sample processing :	02	
	Culture based analysis (Bacteria, Fungi and Viruses)		
	Community DNA analysis		
1.8	Biogeochemical cycles:	04	
	Carbon, Nitrogen, Phosphorous, Sulphur, Iron		
Unit II	Aquatic and Wastewater Microbiology	15 L	
1.	Fresh water environments and micro-organisms	03	
	found in Springs, rivers and streams, Lakes, marshes and bogs		
2.	Potable water: Definition, water purification and list of Pathogens	02	
	transmitted through water		

3.	3. Sanitary analysis of water:		
	Indicator organisms and their detection in water : Total Coliforms, Fecal		
	Coliforms and E. coli, Fecal Streptococci,		
	Clostridium perfringens		
4.	The nature of wastewater	01	
5.	Modern Waste Water treatment: Primary, Secondary and Tertiary	02	
	Treatment		
6.	Removal of Pathogens by Sewage treatment Processes	01	
7.	Oxidation Ponds and Septic tanks	01	
8.	Sludge Processing	01	
<u> </u>	Disposal of treated waste water and biosolids	02	
Unit III	Applied	15 L	
3.1	NIICFODIOIOgy Biofortilizors	04	
5.1	Introduction to Riofortilizara	04	
	A dwanta and disa dwanta and		
	Advantages and disadvantages		
	l ypes of biofertilizers		
	Mass production of Biotertilizers		
	(<i>Rhizobium</i>) Benefits of inoculation		
	Mass cultivation of Blue green algae and their uses		
	Mass cultivation of <i>Azolla</i> and its use		
3.2	Bioinsecticides	04	
	Advantages and disadvantages of		
	bioinsecticides Types of bioinsecticides		
	Bacillus thuringiensis preparation		
	Viricides: Baculovirus		
	preparation Safety of microbial		
	insecticide		
3.3	Bioremediation	05	
	Microorganisms in		
	bioremediation Bioremediation		
	Technologies		
	In-situ		
	Fx-		
	situ		
	Monitoring the officercy of Dioremediction		
34	Rioleaching	01	
3.5	Bioplastics	01	
~.~		~ -	

Textbooks and Additional References:

- SubbaRao N.S., Advances in agricultural microbiology, Meditech A division of scientific international, 2nd Ed., 2018.
- Maier R.M., Pepper I.L. & Gerba C.P., Environmental Microbiology San Diego (California): Academic Press, 2nd Ed., 2010.
- Salle, A.J., Fundamental Principles of Bacteriology, Tata McGraw Hill Publishing Company, 7th Ed., 1984.
- Willey J. M., Sherwood L., Woolverton C. J. Prescott L. M., & Willey J. M., Prescott's microbiology, New York: McGraw-Hill,10th Ed., 2011.
- Frobisher, M., Fundamentals of microbiology, Philadelphia: Saunders, 9th Ed., 1974.
- 6. Thakur I, Environmental Biotechnology Basic concepts and application, IK international Pvt Ltd, 2006.
- Madigan M., Martinko J. & Parkar J, "Brock Biology of microorganisms", Pearson Education International, 12th Ed., 2009.
- Peppler, H. J. and Perlman, D., Microbial Technology, Vol. 1 & 2, Academic Press, 1979.

SEMESTER III – PRACTICAL

Course:	Practicals based on SMIC 301 ,SMIC 302 ,SMIC 303			
SMIC3PR	(Credits: 2.5, Practicals /Week: Equivalent to 9 lectures/week)			
Learning	Develop analytical skills, problem solving & critical thinking			
Objectives:	Gain knowledge of the principles & methods involved in estimation of			
	biomolecules			
	Understand behaviour & activities of microorganisms in their natural			
	environments			
	Learn important tools & techniques to study microbial activities and its import on the environment.			
	Develop soft skills			
	Develop soft skins			
Outcomes:	On completion of the course, students will be acquire abilities to:			
	Work with nucleic acids			
	Carry out Quantitative analysis of sugar, protein and other biomolecules			
	Design an experiment and present research data			
	Study microbial activities from environmental samples			
	Test the quality of air, water and sewage			
- 1	> Use biostatistics in compiling scientific data and presentation.			
	PRACTICAL – I			
	1 Isolation of DNA from E coli			
	 Isolation of DNA using aggress gel electrophoresis 			
	2 Separation of DIVA using agarose ger electrophotesis 3 PCR (Demonstration)			
	 FUN (Demonstration) Problems on Mendelian Genetic Pedigree analysis and Hardy Weinberg 			
	Law			
	PRACTICAL – II			
	1 Estimation of biomolecules:			
	a. Reducing sugar by DNSA method			
	b. Protein by direct and indirect Biuret method			
	c. DNA by DPA method			
	d. RNA by Orcinol method			
	2 Extraction of lipid by Soxhlet method (Demonstration)			
	3 Separation and identification of amino acids by ascending paper			
	chromatography.			
	4 Separation and identification of sugars by TLC.			
	5 Sizing Yeast cells using Density gradient centrifugation (Demonstration)			
	6 Use of online tools for referencing			
	7 Downloading and analysis of research paper			
	 Preparation of Scientific poster 			
	0 Writing an abstract from a given paper			
	10 Writing of Desearch Proposel (CA)			
	10 writing of Research Proposal (CA)			
	11 Statistical Analysis of given data			

PRACTICAL – III

- 1 Enumeration of microorganisms in air and study of its load after fumigation
- 2 Study of air microflora and determination of sedimentation rate
- 3 Routine analysis of water:
 - a. Standard Plate Count
 - b. Detection of Coliforms in water: Presumptive Test, Confirmed Test and Completed Test
 - c. Rapid Detection of *E.coli* by MUG Technique (Demonstration)
- 4 Waste water analysis:
 - a. Study of microbial flora in raw and treated sewage
 - b. Determination of total solids in wastewater
 - c. Determination of BOD and COD of wastewater
- 5 Analysis of Soil Flora
 - a. Isolation of bacteria, Actinomycetes and fungi from soil
 - b. Enrichment and isolation of Nitrosifiers, Nitrifiers, Cellulose digesters, Sulphate reducers and Phosphate solubilisers from soil
 - c. Setting of a Winogradskys column
- 6 Visit to a sewage treatment plant or water purification plant.
- 7 Biofertilizer preparation

Examination		Time Duration	Marks		
A. EVALUATION SCHEME FOR THEORY COURSES (3 PAPERS)					
I. Continuous Assessment (C.A.)	Des P	5	40		
C.A.I Test	MCQ, 1M answers etc	40 mins	20		
C.A.II Test	Assignment/Project /Posters/ Presentations etc	CAN	20		
II. Semester End Examination (SEE)	There	2 hours	60		
Each Theory Paper	19111		40+60= 100		
B. EVALUATION SCHEME FOR PRACTICAL COURSES (3 COURSES)					
Semester End Practical Examination	1200	Nº.	150		
For Each Practical course	1010	1.121	50		
Practical Course (3 courses)		3 days	150		

EVALUATION SCHEME: