



## JAI HIND COLLEGE BASANTSING INSTITUTE OF SCIENCE &

## J.T.LALVANI COLLEGE OF COMMERCE (AUTONOMOUS) "A" Road, Churchgate, Mumbai - 400 020, India.

# Affiliated to University of Mumbai

## Program : B.Sc.

Proposed Course : Botany

Semester III

Credit Based Semester and Grading System (CBCS) with effect from the academic year 2020 -21

## S.Y.B.Sc. Botany Syllabus

## Academic year 2020 -2021

| Semester III |                                                 |         |                   |
|--------------|-------------------------------------------------|---------|-------------------|
| Course       | Course Title                                    | Credits | Lectures<br>/Week |
| SBOT301      | Algae; Fungi and Palaeobotany                   | 2       | 3                 |
| SBOT 302     | Instrumentation, Cytology and Molecular Biology | 2       | 3                 |
| SBOT303      | Pharmacognosy, Forestry & Economic Botany       | 2       | 3                 |
| SBOT3PR      | Practical                                       | 2.5     | 9                 |



### Semester III – Theory

| Course code:   | ALGAE; FUNGI AND PALAEOBOTANY                                            | 45 lectures  |
|----------------|--------------------------------------------------------------------------|--------------|
| <b>SBOT301</b> | (Credits : 2Lectures/Week: 3)                                            |              |
|                |                                                                          |              |
|                | Learning Objectives:                                                     |              |
|                | • To learn the morphology, structure and importance of the               | ne organisms |
|                | and differentiate between various groups of Algae & Fu                   | ıngi.        |
|                | • To learn the life cycles of individuals belonging to Xant              | thophyta,    |
|                | Euglenophyta, Bacillariophyta and Ascomycetes.                           | 1.0          |
|                | • To learn the economic importance of each group.                        |              |
|                | • To study the geological time scale and evolution of plan               | nts through  |
|                | the same.                                                                |              |
|                | • To understand the process of fossil formation and how i                | it can be    |
|                | studied.                                                                 |              |
| in.            | • To study form genera discovered post fossilisation                     |              |
|                | <ul> <li>To understand how knowledge of Palaeobotany can be a</li> </ul> | used in oil  |
|                | and coal exploration                                                     | used in on   |
|                | und cour exploration.                                                    |              |
|                | Learning Outcomes:                                                       |              |
|                | Students will be able to                                                 |              |
|                | • Differentiate and compare between different classes of a               | algae/fungi  |
| 1.             | from their syllabus.                                                     |              |
| 11             | • Understand life cycles and systematic position of algae/               | fungi        |
| 1.1            | prescribed in the syllabus                                               | 101-81       |
| 1.1            | • Analyse and comment upon economic importance of als                    | gae/fungi    |
| 1.3            | with the help of case studies.                                           | 540, 1411,81 |
| \*             | • Identify the causal organism and give remedial measure                 | es for       |
| 1              | nathological symptoms on plants                                          | 5 101        |
| 1              | • Understand the importance and correlation of the difference            | ent eras in  |
|                | geological time scale.                                                   |              |
|                | • Understand the evolution of plants and their fossils                   |              |
|                | <ul> <li>Explain different types of fossilisation processes</li> </ul>   |              |
|                | • Apply the knowledge for coal and oil exploration                       |              |
|                | • Apply the knowledge for coar and on exploration.                       |              |
|                | 1311-1-12/                                                               | 15 L         |
|                | ALGAE                                                                    |              |
| Unit I         | Outline of Classification according to G M. Smith. Get                   | eneral       |
|                | characters mode of nutrition thallus stru                                | cture        |
|                | reproduction of Xanthophyta Euglenophyta                                 | and          |
|                | Bacillariophyta                                                          |              |
|                | • Life cycle and systematic position of                                  |              |
|                | • Euglena                                                                |              |
|                | o Vaucheria                                                              |              |
|                | o Pinnularia.                                                            |              |
|                | • Economic importance of Algae with respect to Xanthor                   | ohvta.       |
|                | Euglenophyta and Bacillariophyta                                         |              |
|                | • Preservation technique- wet and dry                                    |              |
|                | • Case studies for Diatomaceous earth/ coral reef                        |              |

|                                                                   | FUNGI AND PLANT PATHOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 L                                        |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Unit II                                                           | <ul> <li>Unit II</li> <li>Outline of Classification according to G. M. Smith, General characters, mode of nutrition, thallus structure, reproduction, economic importance of Ascomycetes</li> <li>Structure, life cycle and systematic position of: <ul> <li>Yeast</li> <li>Aspergillus</li> <li>Penicillium</li> <li>Erysiphe – Powdery mildew</li> <li>Claviceps – Ergot of Rye</li> </ul> </li> <li>Case studies of diseases</li> <li>Broad review of Mycotoxins from Fungi</li> </ul>                                                                |                                             |
| Unit III                                                          | <ul> <li>PALAEOBOTANY</li> <li>Geological time scale, formation and types of fossils.</li> <li>Study of Form genus (with the help of permanent slides/<br/>photomicrographs):         <ul> <li><i>Rhynia</i></li> <li><i>Calamites</i></li> <li><i>Lepidodenron&amp;Lepidocarpon</i></li> <li><i>Lyginopteris</i></li> <li><i>Pentoxylon</i></li> </ul> </li> <li>Importance of Palaeobotany in Coal and Oil exploration</li> </ul>                                                                                                                      | 15 L                                        |
| References         1.         2.         3.         4.         5. | Gangulee, H.C., Das K.S., &Datta C., College Botany, Volume I, New Cen<br>Book Agency, 2006<br>Vashishta B. R., & Sinha A. K., Botany for degree students Algae, S. Cha<br>1st Edition, 2010<br>Vashishta B. R., & Sinha A. K., Botany for degree students Fungi, S. Cha<br>1st Edition, 2010<br>Smith G. M., Cryptogamic Botany – Algae and Fungi, Vol. I, McGraw F<br>Publications, 1955<br>Agashe S. N., Palaeobotany: Plants of the past, their evolut<br>Palaeoenvironment and application in exploration of fossil fuels, Scie<br>Publishers, 1997 | tral<br>and,<br>und,<br>Hill<br>ion,<br>nce |
| 6.                                                                | Biswas C and Johri BM - The Gymnosperms Springer publication.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |

| Course code:                          | INSTRUMENTATION, CYTOLOGY AND MOLECULAR                                                                                | 45          |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------|
| SBOT302                               | BIOLOGY                                                                                                                | lectures    |
|                                       | (Credits : 2 Lectures/Week: 3)                                                                                         |             |
|                                       | Learning Objectives                                                                                                    |             |
|                                       | Learning Objectives:                                                                                                   |             |
|                                       | • To introduce the concept of chromatography to students.                                                              | 1           |
|                                       | • To teach the technique of centrifugation, essential in biolo                                                         | bgy along   |
|                                       | To learn observations involving changes in                                                                             |             |
|                                       | To learn chromosomal indiations involving changes in     normalchromosomal structure                                   |             |
|                                       | <ul> <li>To study the different methods of sex determination seen.</li> </ul>                                          | in plants   |
|                                       | and animals. They learn about traits specifically present in                                                           | n opposite  |
|                                       | sexes and yet controlled by either autosomes or sex chrom                                                              | nosomes.    |
|                                       | • To study inheritance of extra-nuclear genes that follow no                                                           | n-          |
|                                       | Mendelian inheritance.                                                                                                 |             |
|                                       | • To learn in-depth two main cell organelles- nucleus and v                                                            | acuole.     |
|                                       | • To study the basic structure of eukaryotic chromosome an                                                             | d           |
|                                       | organization of DNA in prokaryotic and eukaryotic and                                                                  |             |
|                                       | chromosome.                                                                                                            |             |
|                                       | • To learn about the presence of unique and repetitive seque                                                           | ences       |
|                                       | DNA present in the genome along with centromeric and to                                                                | elomeric    |
| · · ·                                 | DNA.                                                                                                                   |             |
| 1.1                                   | Termine Outerman                                                                                                       |             |
| 1.1                                   | Learning Outcomes:                                                                                                     |             |
| 1.1                                   | Students will be able to:                                                                                              |             |
| 13                                    | • Understand the basic concept & working of light microsco                                                             | one &       |
| - V                                   | electron microscope                                                                                                    | -p• ••      |
| · · · · · · · · · · · · · · · · · · · | • Understand and apply the knowledge of chromatography                                                                 | for         |
|                                       | separation of plant metabolites.                                                                                       |             |
|                                       | • Understand the principle behind the technique of centrifug                                                           | gation and  |
|                                       | its applications.                                                                                                      |             |
|                                       | • Relate the association of genetic defects observed in an or                                                          | ganism      |
|                                       | with changes in chromosomal structure. They are also able                                                              | e to guess  |
|                                       | formation of defactive generates                                                                                       | ue to       |
|                                       | <ul> <li>Dealise that determination of say of an organism could be</li> </ul>                                          | based on    |
|                                       | • Realise that determination of sex of all organism could be<br>either genotypic determination or X chromosome-autoson | ne halance  |
|                                       | system determination or genic sex determination. Student                                                               | s are able  |
|                                       | to distinguish between various methods of sex determination                                                            | ion as they |
|                                       | exists in different organisms.                                                                                         |             |
|                                       | • Differentiate between sex linked, sex influenced and sex-                                                            | limited     |
|                                       | traits. They also realise that secondary sexual characters c                                                           | an also     |
|                                       | result due to effect of genes present on the autosomes and                                                             | may not     |
|                                       | always be on the sex chromosomes.                                                                                      |             |
|                                       | • Realise that inheritance of extra-nuclear genes follows rul                                                          | es          |
|                                       | different from those for nuclear genes and is generally ma                                                             | ternal or   |
|                                       | uniparental inheritance.                                                                                               |             |
|                                       | Understand the detailed structure and role of important ce                                                             | ll          |

|          | <ul> <li>organelles like nucleus and vacuoles.</li> <li>Understand the details of organisation of DNA in prokaryotic and eukaryotic chromosomes and also how DNA in the eukaryotic chromosome is compacted by its association of histones in nucleosomes in to chromatin fibres. They will note the presence of unique and repetitive sequences in DNA as well as functions of centromeric and telomeric DNA.</li> <li>Understand the detail process of DNA Replication both in prokaryotes and eukaryotes and understand the similarities and</li> </ul>                                                                                                                                                                                                                                                                                                                                         |      |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|          | differences in both the systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| Unit I   | INSTRUMENTATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15 L |
|          | <ul> <li>Colorimetry and Spectrophotometry (Visible, UV and IR) -<br/>Instrumentation, working, principle and applications</li> <li>Centrifugation: Principle, working and application of<br/>centrifuge, types of centrifuge.</li> <li>Chromatography- Principles and techniques in paper and<br/>thin layer chromatography.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| Unit II  | CYTOLOGY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15 L |
|          | <ul> <li>Variation in Chromosome structure (Chromosomal<br/>Aberrations) Definition, Origin, Cytological and Genetic<br/>Effects of thefollowing: Deletions, Duplications, Inversions<br/>andTranslocations.</li> <li>Sex linkedinheritance (eye colour in <i>Drosophila</i>,<br/>Haemophilia, colour blindness), sex influenced and sex-<br/>limited traits, Sex determination- Chromosomal Methods:<br/>heterogametic males and heterogametic females. Sex<br/>determination in monoecious and dioecious plants. Genic<br/>Balance Theory of sex determination in <i>Drosophila</i>, Lyon's<br/>Hypothesis of X chromosome inactivation.</li> <li>Extranuclear Genetics Organelle heredity-         <ul> <li>Chloroplast determines heredity - Plastid<br/>transmission in plants, Streptomycin resistance in<br/><i>Chlamydomonas</i>.</li> <li>Male sterility in maize</li> </ul> </li> </ul> |      |
|          | MOLECULAR BIOLOGY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 L |
| Unit III | <ul> <li>Ultra-structure and function of nucleus</li> <li>Ultra-structure and function of vacuole</li> <li>Structure and function of Eukaryotic Chromosome</li> <li>DNA replication: Modes of Replication, Messelson and Stahl Experiment</li> <li>DNA replication in prokaryotes and eukaryotes- enzymes involved and molecular mechanism of replication</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |

#### **References**:

- De Robertis E. D. P., Cell Biology and Molecular Biology, 8<sup>th</sup> edition, Lea and Febinger, 1987.
- Russell P. J., iGenetics: A Mendelian Approach, 3<sup>rd</sup> edition, Pearson Education India, 2009.
- Buchanan B. B., Biochemistry & Molecular biology of plants, Wiley-Blackwell 2002
- 4. Lewin B., Gene V, Oxford University Press, 1994
- 5. Glick, B. R., Pasternak, J. J. & Patten C. L.: Molecular Biotechnology Principles and applications of Recombinant DNA 4th Edition Wiley Publishers 2010
- 6. Winchester, A. M., Heredity an Introduction to Genetics,
- 7. Veerakumari, L., Bio-instrumentation, M. J. P. Publishers, 2011
- Fletcher, H., Hickey, I., Winter P., Instant Notes Genetics, Taylor & Francis Publisher, 2006
- 9. Clive Dennision- A guide to protein isolation: Kluwer Academic Publishers.
- 10. 10. J. Koolman and K.H. Roehm;- Colour Atlas of Biochemistry; Second edition; Thiem Stuttgart New York.

| Course  | PHARMACOGNOSY, FORESTRY & ECONOMIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45                                                              |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| code:   | BOTANY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lectures                                                        |
| SBOT303 | (Credits : 2 Lectures/Week: 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 |
|         | <ul> <li>Learning Objectives:</li> <li>To learn importance of Pharmacopoeia in the world of medicinunderstand differences between different pharmacopoeias from</li> <li>To understand the importance of authentication of crude drugs steps involved in achieving the same.</li> <li>To study Monographs from Ayurvedic pharmacopoeia of Indi</li> <li>To study the different types of natural and artificially created to know the use of forests products for the use of mankind.</li> <li>To study the different plants used in industry for creating nature products.</li> </ul> | ne and to<br>m India.<br>s and the<br>a.<br>forests and<br>tral |
|         | Learning Outcomes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |
|         | <ul> <li>Students will be able to</li> <li>Differentiate between substitutes and adulterants/ regional and variations in phytoconstituents.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 seasonal                                                      |
|         | <ul> <li>Understand the importance of proximate analysis/organoleptic of crude drugs/monographs prescribed in their syllabus.</li> <li>Differentiate into different types of forests and their relevance nature and mankind.</li> </ul>                                                                                                                                                                                                                                                                                                                                               | evaluation                                                      |
|         | • Comment on the economic aspects of the forest products.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /                                                               |
|         | • Comment on the industrial and economic aspects of different pasedproducts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | plant                                                           |
| Unit I  | PHARMACOGNOSY :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15 L                                                            |
|         | <ul> <li>Introduction to pharmacopoeia</li> <li>Indian pharmacopoeia, Indian Herbal Pharmacopoeia</li> <li>Ayurvedic Pharmacopoeia</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                         | and                                                             |
|         | <ul> <li>Substitutes; adulterants, regional and seasonal variations<br/>phytoconstituents</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in in                                                           |
|         | <ul> <li>Proximate analysis of crude drugs- Total Ash, Acid-insolu ash, water soluble ash, Extractive values: Polar and non-polar Fluorescence analysis, Moisture content, organoleptic evalua of crude drugs</li> <li>Study of Monograph:</li> <li>Saracaasoca(Stem bark)</li> <li>Bacopamonnieri (Entire plant)</li> <li>Ocimum sanctum. (Leaf)</li> </ul>                                                                                                                                                                                                                          | uble                                                            |
|         | <ul> <li><i>Emblica officinalis</i> (Fruit)</li> <li><i>Rubiacordifolia</i>(Root)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |

|            | FORESTRY & ECONOMIC BOTANY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Unit II    | <ul> <li><u>Forestry:</u> <ul> <li>Outline of types of forests in India</li> <li>Agroforestry, Urban forestry, organic farming and silvi-culture</li> <li>Case studies</li> </ul> </li> <li><u>Economic Botany:</u> <ul> <li>Fibre and fibre yielding plants: Botanical source, Method of extraction, characteristics and uses of fibres obtained from:</li> <li>Jute, Coconut, Sun hemp, Kapok, Linen &amp; Abaca</li> <li>Spice and condiments:Botanical source, Processing and medicinal uses of: Ginger, Cinnamon, Black pepper, Nutmeg</li> <li>Beverages: Botanical source &amp; Processing for production of Tea, Coffee, Cocoa</li> </ul> </li> </ul>                                                               | 15 L  |
| Unit III   | <ul> <li>INDUSTRIES BASED ON PLANT PRODUCTS</li> <li>Aromatherapy – Introduction, uses with few examples</li> <li>Nutraceuticals: Source and Nutraceutical values for: <ul> <li>Any 5 currently important plants/plant parts</li> </ul> </li> <li>Enzyme industry: Source, industrial applications and broad overview of Method of extraction/production of the following enzymes: <ul> <li>Cellulase</li> <li>Papain</li> <li>Bromelain</li> <li>Tannase</li> <li>Lipase</li> <li>Amylase</li> </ul> </li> <li>Biofuels- Definitions and Typeswith examples. <ul> <li>Firstgeneration: Alcohol (Sugarcane)</li> <li>Secondgeneration: Algae</li> <li>Fourth generation: Photobiological solar fuels</li> </ul> </li> </ul> | 15 L  |
| References |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| 1.         | Hill, A. F., .Economic Botany – A textbook of useful plants and plant prod<br>McGraw-Hill Book Company, Incorporated, 1937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ucts, |
| 2.         | Ayurvedic Pharmacopoeia of India, AYUSH, Government of India.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| 3.         | Kokate C. K., Purohit A. P., Pharmacognosy, NiraliPrakashan, 2011.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| 4.         | Khandelwal K.R., Practical Pharmacognosy- techniques and experim NiraliPrakashan, 2008.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ents, |
| 5.         | Evans W. C., Trease and Evans Pharmacognosy, 16 th edition, Saunders 2009.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ltd., |

- Casida, L.E.J.R., Industrial Microbiology, New age International Publishers, 2007
- The Amylase Research Society Handbook of Amylases and related enzymes: Their sources, isolation methods, properties and applications. Pergamon Press, 2014.
- Parameshwaram B Varjani S, Raveendran S. Green Bio-processes: Enzymes in Industrial Food processing. Springer, 2018.
- 9. Srivastava M, Srivastava N, Ramteke P.W, Mishra P.K. Approaches to Enhance industrial production of Fungal cellulases. Springer, 2019.
- 10. Konwar B.K. and Sagar K. Lipase: An industrial enzyme through Metagenomics. CRC Press, 2018.
- Eva-Mari Aro From first generation biofuels to advanced solar biofuels. Ambio 2016, 45( Suppl. 1): S24-S31; DOI 10.1007/s13280-015-0730-0
- Lehmussaari et al; Process for the extraction of beta amylase from barley grains US4675296AUnited states patent [19]
- Enzyme Extraction: Beta amylase from barley- ET -8 Enzymology and Enzyme Technology.
- Margarita M. Andrade-Mahecha, Olga Morales-Rodriguez and Hugo A.Martinez-Correa. Study of extraction process of papain from latex of papaya (*Carica papaya* L.) fruits cv. Maradol; Acta Agronomica 60(3) 2011, pg 217-223.
- Ketnawa S. Chaiwut P. and Rawdkuen S: Extraction of Bromelain from pineapple peels. Food Science and Technology International 17(4) 395-402; DOI: 10.1177/1082013210387817
- Rida Arshad, Ayesha Mohyuddin, Shagufta Saeed & Abrar Ul Hassan-Optimized production of tannase and gallic acid from fruit seeds by solid state fermentation: Tropical Journal of Pharmaceutical Research May 2019; 18(5):911-918.

| <b>Course Code:</b> | Practical | Credits: 2.5 |
|---------------------|-----------|--------------|
| SBOT3PR             |           |              |

#### Learning Objectives:

- To study the morphological differences and structures of different classes of marine and fresh water algae
- To study the morphological and features of different classes of pathogenic fungi
- To observe the various fossil specimens and slides.
- To learn the method of preparation of various silica or alumina columns to demonstrate adsorption chromatography and use it for separation of plant pigments. They will also learn to prepare and use ion exchange resin columns to demonstrate the separation of amino acids by ion exchange chromatography.
- To observe macroscopic and microscopic structures of parts of different medicinal plants and also perform various chemical tests to identify their active ingredients.
- To learn method of extraction and isolation of some plant based enzymes.

#### Learning Outcomes:

Students will be able to

1.762

- Differentiate and classify the various forms of algae and understand their importance to the environment
- Differentiate and classify the various forms of fungal species, understand life cycles of pathogenic fungi and will also be able to suggest measures to protect the plants from pathogenic fungi.
- Understand the importance of fossil study.
- Apply techniques like chromatography, spectroscopy and electrophoresis for separation and characterisation of plant based compounds

an de la

- Understand the use of plants in medicine, their analysis and their applications
- Understand the application of extracted enzymes

|   | Practical Paper I                                                                          |
|---|--------------------------------------------------------------------------------------------|
| 1 | Study of stages in the life cycle of Euglena from fresh/ preserved material and            |
|   | permanent slide                                                                            |
| 2 | Study of stages in the life cycle of Vaucheria from fresh/ preserved material and          |
|   | permanent slide                                                                            |
| 3 | Study of stages in the life cycle of Diatoms from fresh/ preserved material and            |
|   | permanent slide                                                                            |
| 4 | Economic importance of algae: Pollution indicators, Diatomaceous earth                     |
| 5 | Study of stages in the life cycle of Yeast from fresh/ preserved material and permanent    |
|   | slides                                                                                     |
| 6 | Study of stages in the life cycle of Aspergillus from fresh/ preserved material and        |
|   | permanent slides                                                                           |
| 7 | Study of stages in the life cycle of <i>Penicillium</i> from fresh/ preserved material and |
|   | permanent slides                                                                           |
| 8 | Study of stages in the life cycle of Erysiphe from material and permanent slides           |
| 9 | Study of stages in the life cycle of <i>Claviceps</i> from material and permanent slides   |
|   |                                                                                            |

| 10 | Economic importance of Fungi – Disease causing fungi, useful fungi                     |
|----|----------------------------------------------------------------------------------------|
| 11 | Study of form genera <i>Rhynia</i> with the help of permanent slides/ photomicrographs |
| 12 | Study of form genera Calamites with the help of permanent slides/ photomicrographs     |
| 13 | Study of form generaLepidodenronandLepidocarpon with the help of permanent slides/     |
|    | photomicrographs                                                                       |
| 14 | Study of form generaLyginopteris with the help of permanent slides/ photomicrographs   |
| 15 | Study of form genera Pentoxylon with the help of permanent slides/ photomicrographs    |

| Pra | Practical Paper II                                                                 |  |
|-----|------------------------------------------------------------------------------------|--|
| 1   | To separate plant pigments using paper chromatography                              |  |
| 2   | To separate amino acids using paper chromatography                                 |  |
| 3   | To separate plant pigments using thin layer chromatography (TLC)                   |  |
| 4   | Isolation of chloroplastusing Sucrose density gradient centrifugation.             |  |
| 5   | Identification of the chromosomal aberrations                                      |  |
| 6   | Karyotype of Normal Human male and normal human female                             |  |
| 7   | Study of karyotype for chromosomal aberrations in Cri-du-chat syndrome; D-G        |  |
|     | translocation, Philadelphia syndrome                                               |  |
| 8   | Study of cytoplasmic inheritance pattern with reference to Plastid transmission in |  |
|     | plants, Streptomycin resistance in Chlamydomonas and Male sterility in maize       |  |
| 9   | Study of Drosophila – culturing, morphological studies & mutations                 |  |
| 10  | To extract RNA from the given material                                             |  |
| 11  | Estimation of RNA using orcinol method                                             |  |
| 12  | To extract genomic DNA from the given material and determine percentage purity of  |  |
|     | DNA using UV spectrophotometer.                                                    |  |
| 13  | Estimation of DNA by DPA method                                                    |  |

| Pra | Practical Paper III                                                                  |  |
|-----|--------------------------------------------------------------------------------------|--|
| 1   | To determine Total Ash, Acid-insoluble Ash and Water-Soluble Ash from plants         |  |
|     | mentioned in theory.                                                                 |  |
| 2   | To determine extractive values from plants mentioned in theory.                      |  |
| 3   | To perform Fluorescence analysis of given plant material.                            |  |
| 4   | To determine the moisture content from the given plant material.                     |  |
| 5   | To study Macroscopic, Microscopic characters and perform the chemical test to study  |  |
|     | secondary metabolites of the following:                                              |  |
|     | o Saracaasoca                                                                        |  |
|     | <ul> <li>Bacopamonnieri</li> </ul>                                                   |  |
|     | <ul> <li>Ocimum sanctum</li> </ul>                                                   |  |
|     | <ul> <li>Emblica officinalis</li> </ul>                                              |  |
|     | o Rubiacordifolia                                                                    |  |
| 6   | Study of different types of forests using cartographic method                        |  |
| 7   | Fibre and fibre yielding plants: Jute, Coconut, Sun hemp, Kapok, Sisal, Linen, Abaca |  |
|     | Spice and condiments: Ginger, Cinnamon, Black pepper, Nutmeg                         |  |
|     | Beverages: Tea, Coffee, Cocoa                                                        |  |
| 8   | Extraction of Amylase/ Papain / Bromelain/Cellulase/ Lipase / Tannase from suitable  |  |
|     | plant or fungal sourcesfollowed by detection/estimation of enzyme activity of        |  |
|     | extracted protein.                                                                   |  |
| 09  | To extract and estimate protein content from the given plant material using Lowry's  |  |
|     | method and biuret method.                                                            |  |
| 10  | Use of aromatherapy – bath oils/ scented candles/ incense sticks                     |  |
| 11  | Identification of Bio-fuel plants                                                    |  |
| 12  | To estimate carbohydrates/fats/ vitamin content from the plant material.             |  |
|     | VSA ALTERS /ALL                                                                      |  |
|     | $\langle V \rangle$                                                                  |  |
|     |                                                                                      |  |
|     | 131                                                                                  |  |
|     | NWN SAME INT                                                                         |  |
|     |                                                                                      |  |
|     |                                                                                      |  |

#### **Evaluation Scheme:**

#### [A] Evaluation scheme for Theory courses:

I. Continuous Assessment (C.A.) - 40 Marks

(i) C.A.-I: Test/continuous evaluation in given time frame with Surprise test -20 Marks of 40 mins. duration

(ii) C.A.-II: Assignment/project/quiz/ test/ continuous evaluation in given time frame with Surprise test

II. Semester End Examination (SEE)- 60 Marks

[B] Evaluation scheme for Practical courses: (SEE - 50 marks)

#### NOTE:

1. A minimum of TWO field excursions habitat studies are compulsory. Field work of not less than eight hours duration is equivalent o one period per week for a batch of fifteen students.

2. A candidate will be allowed to appear for the practical examinations only if he/she submits a certified journal of SYBSc Botany and the Field Report or a certificate from the Head of theDepartment/Institute to the effect that the candidate has completed the practical course of SYBSc Botany as par the minimum requirements

SYBSc Botany as per the minimum requirements.