

JAI HIND COLLEGE BASANTSING INSTITUTE OF SCIENCE & J.T.LALVANI COLLEGE OF COMMERCE (AUTONOMOUS) "A" Road, Churchgate, Mumbai - 400 020, India.

Affiliated to University of Mumbai

Program : B.Sc.

Proposed Course : Chemistry

Semester V

Credit Based Semester and Grading System (CBCS) with effect from the Academic year 2020-21

T.Y. B.Sc. Chemistry Syllabus

Academic year 2020-2021

Semester V			
Course Code	Course Title	Credits	Lectures /Week
SCHE501	Advanced Physical Chemistry-I	4	4
SCHE502	Advanced Inorganic Chemistry-I	4	4
SCHE503	Advanced Organic Chemistry-I	4	4
SCHE504	Advanced Analytical Chemistry-I	4	4
SCHE5PR1	Practical Coursework in Physical and Inorganic Chemistry-I	4	8
SCHE5PR2	Practical Coursework in Organic and Analytical Chemistry-I	4	8
SCHE5AC	Pharmaceutical Chemistry, Dyes, Paints & Pigments-I	2.5	4
SCHE5ACPR	Practical Coursework in Pharmaceutical Chemistry, Dyes, Paints & Pigments-I	2.5	4

Course: SCHE501	Advanced Physical Chemistry - I (Credits: 4 Lectures/Week: 4) <u>Course description:</u> Molecular Spectroscopy, Thermodynamics, Kinetics, Nuclear Chemis Surface Chemistry	try and
	 Objectives: To understand the theoretical concept of molecular spectroscopy To differentiate between different types of molecular spectroscopy To explain the various colligative properties of solutions and to de molecular weight using this property To engage the learner in the principles and properties of thermodynamic kinetics To introduce and explain the theory and applications of nuclear chem To understand the principle of adsorption and to determine the surface of an adsorbate 	etermine nics and istry e area
	 Learning Outcomes: Learner has a grip over the theoretical principles underlying spectroso techniques for applications in structure elucidation. Learner is able to design experiments which measure changes in colli properties for determination of molecular weight of analyte. Learner is capable of applying the concepts of adsorption for determine of surface area of porous adsorbate material. Learner is able to correlate the importance of kinetics and thermodyna a chemical reaction and hence to any industrial process. 	copic gative nation amics in
Unit I	Molecular Spectroscopy:	15L
	 a. Dipole moment Introduction to dipole moment Polarization of a bond, bond moment Polarization of a bond, bond moment Dipole moment and molecular structure b. Rotational Spectroscopy Conditions for obtaining rotational spectrum of a diatomic molecule Rigid rotor, moment of inertia Energy levels Selection rule, nature of spectrum 	(1L) (4L)
	 v) Determination of internuclear distance and isotopic shift c. Vibration Spectroscopy i) Vibrational motion, degrees of freedom ii) Modes of vibration iii) Vibrational spectrum of a diatomic molecule iv) Simple harmonic oscillator v) Energy levels vi) Zero-point energy vii) Conditions for obtaining vibrational spectrum viii) Selection rules & nature of spectrum 	(3L)

Semester V – Theory

(4L)
(3L)
15L
8L
(2L)
(4L)
(2L)

	2. Chemical Kinetics	7L
	a. Methods of determination of rate laws Recapitulation-Effect of temperature on rate of a reaction, temperature coefficient, Arrhenius equation, energy of activation and its experimental determination (numericals expected)	(1L)
	 b. Experimental methods of studying chemical kinetics Conductometric Potentiometric Optical methods Polarimetry Spectrophotometric methods 	(1L)
	 c. Theories of reaction rates Collision theory of reaction rates, application of collision theory to 1) Biomolecular reaction and 2) Unimolecular reaction, Lindemann theory (derivation expected), merits and drawbacks of collision theory. Activated complex theory of bimolecular reactions, expression for rate constant of bimolecular reactions (derivation not expected), comparison of collision theory and activated complex theory 	(3L)
	 d. Classification of reactions i) Slow, fast and ultra –fast ii) Study of kinetics of fast reactions by Relaxation method (Derivation expected), Stop flow method, pulse method and Flash photolysis 	(2L)
Unit III	Nuclear Chemistry	15L
	 a. Detection and Measurement of Radioactivity Types and characteristics of nuclear radiations Behaviour of ion pairs in an electric field Detection and measurement of nuclear radiations using G.M. Counter and Scintillation Counter 	(3L)
	 b. Radioactive Equilibrium Secular and transient Determination of radioactive constants for radio-elements having: Moderate half-life Long half-life Extremely long or short half-life (Numerical expected) c. Application of use of radioisotopes as Tracers 	(3L)
	i. Chemical reaction mechanismii. Age determination – carbon dating	(2L)

	 d. Nuclear reactions Nuclear transmutation Artificial radioactivity Q - value of nuclear reaction, threshold energy (Numerical expected) e. Fission Process Fissile and fertile material Nuclear fission, chain reaction Factors controlling fission process Multiplication factor and critical size or mass of fissionable material Nuclear power reactor and breeder reactor 	(3L) (3L)
	f. Fusion Process: Thermonuclear reactions occurring on stellar bodies and earth	(1L)
Unit IV	Surface Chemistry	15L
	1. Adsorption	8L
	 a) Introduction to adsorption i. Adsorbate and adsorbent ii. Physical and Chemical Adsorption iii. Adsorption isotherm and its types 	(1L)
	 b) Langmuir's adsorption isotherm (Postulates and derivation expected) 	(2L)
	c) B.E.T. equation for multilayer adsorption (derivation not expected) Significance of the terms involved in equation Determination of surface area of an adsorbent using B.E.T. equation. (Numerical expected on surface area)	(2L)
	 d) Selectivity of an Adsorbent: Equilibrium effect, Kinetic effect, Molecular sieving effect, Desorption effect. 	(1L)
	 e) Types of Adsorbents: i) Conventional Adsorbents: a) Activated carbon b) Carbon molecular sieves (CMS) c) Carbonized polymers and Resins d) Bone charcoal e) Polymeric Adsorbents f) Silica gel g) Activated alumina h) Clay minerals i) Zeolites ii) Non-conventional adsorbents: a) Adsorbent from industrial wastes b) Adsorbent from coal c) Adsorbent from agricultural wastes and agricultural by-products d) Peat e) Oxides and related materials as adsorbents f) River sediments as adsorbent g) Adsorbent from bio-resources h) Adsorbent made from biopolymers such as chitosan i) Adsorbents from 	(2L)

 and catalysis. Nanoelectronics, nanosensors, nanomedicine, nanobiotechnology, computational nanotechnology, Nanomagnetism, Carbon Nanotubes, Nanodevices, Spintronics, self-cleaning nanoparticles. iv) Use of nanomaterial's in adsorption 	
2. Colloidal State	7L
a Introduction to colloids & its proporties	(1L)
 a. Introduction to conoids & its properties i. Classification of colloids - lyophilic and lyophobic colloids Micromolecular, macromolecular and associated colloids. Emulsions, Gels and Sols. ii. Optical Properties – Tyndall effect iii. Colligative properties 	
iv. Mechanical properties – Browman movement	
 b. Electrical Properties Origin of charges on colloidal particles Concept of electrical double layer, zeta potential Helmholtz and Stern's model 	(1L)
 c. Electro-kinetic phenomena i. Electrophoresis ii. Electro-osmosis iii. Streaming potential iv. Sedimentation potential: Donnan Membrane Equilibrium 	(2L)
 d. Stability of colloids & colloidal electrolytes Isoelectric point, Hardy Protective colloids, Hardy-Schulz Rule and Gold number Colloidal electrolytes - Introduction, micelle formation 	(2L)
e. Surfactants- Classification- anionic, cationic, non-ionic and amphoteric, Critical Micelle Concentration, factors affecting CMC, application of surfactants in detergents, food industry, pesticide formulation	(1L)

- Silbey, R. J. & Alberty, R. A. *Physical Chemistry*, 3rd edition, John Wiley & Sons, Inc [part 1]
- 3. Levine, Ira; *Physical Chemistry*, 5th Edition, 2002, Tata McGraw Hill Publishing Co. Ltd.

- 4. Rakshit, P.C.; *Physical Chemistry*, 6th Edition, 2001, Sarat Book Distributors, Kolkota
- 5. Castellan, G.; *Physical Chemistry*, 3rd edition, 5th Reprint, 1995, Narosa Publishing House
- 6. Bockris, J. O. M & Reddy, A. K. N.; *Modern Electrochemistry*, Maria Gamboa Aldeco 2nd Edition, 1st Indian reprint, 2006, Springer
- 7. Banwell, Colin N.; McCash, Elaine M.; *Fundamental of Molecular Spectroscopy*, 4th Edn., Tata McGraw Hill Publishing Co. Ltd. New Delhi, 2008
- 8. Cooper, D. & Devan, C.; Classical Methods, Vol. 1 Analytical Chemistry by Open Learning, 1991, John Wiley & Sons
- 9. Barrow, G.M.; *Physical Chemistry*, 6th Edition, Tata McGraw Hill Publishing Co. Ltd. New Delhi
- 10. Vemullapallie, G.K.; *Physical Chemistry*, 1997, Prentice Hall of India, Pvt. Ltd. New Delhi
- 11. Puri, B.R.; Sharma, L.R.; Pathania, M.S.; *Principles of Physical Chemistry*, Vishal Publishing Company, 2008.
- 12. Introduction to Colloids and Surface Chemistry, Duncan Shaw, Elsevier, 2013.
- 13. Principles of Colloid and Surface Chemistry, Paul C. Hiemenz, Raj Rajagopalan, Taylor & Francis, 1997.
- 14. Bilmeyer, Fred W.; *Textbook of Polymer Science*, John Wiley & Sons (Asia) Publishing Ltd., Singapore, 2007
- 15. Gowariker, V.R.; Viswanathan, N.V.; Sreedhar, Jayadev; *Polymer Science*, New Age International (P) Ltd., Publishers, 2005.
- 16. A Textbook of Physical Chemistry, K L Kapoor, Mc Graw Hill Publishers.

Course: SCHE502	Advanced Inorganic Chemistry - I (Credits: 4 Lectures/Week: 4)Course description:Chemical bonding, Solid State materials, Chemistry of f-block elements, Solution chemistry	
	 Objectives: ➤ To apply various symmetry operations and to recognize the optical activity phenomenon through them ➤ To understand about solid state synthesis and the properties of some important solid state materials such as high temperature supercondu ➤ To understand the basic trend of f-block elements along with its extra and uses ➤ To understand the various types of solvents and their properties 	ctors raction
	 Learning Outcomes: Learner can correlate the symmetry to the spectroscopic signatures of molecule. Learner is exposed to a large number of inorganic materials which f application in electronics & is also equipped with the knowledge of industrial process underlying their synthesis. Learner is able to predict properties of rare earth elements, their significance and applications. Learner is exposed to non-aqueous chemistry and their advantages of use of water as solvent. 	of the ind over
	Unit – I: Chemical Bonding:	15L
Unit I	 a) Molecular Symmetry i. Introduction and Importance ii. Symmetry elements and symmetry operations iii. Concept of a Point Group and illustrations using the following point groups: Cav (HCl), Dah (H₂), C₂v (H₂O), C₃v (NH₃), C₂h (trans – trichloroethylene), D₃h (BCl₃) 	(7L)
	b) Molecular Orbital Theory for Polyatomic Species	(8L)
	i. Simple triatomic species:	
	H ₃ ⁺ and H ₃ (correlation between bond angle and Molecular orbitals)	
	ii. Introduction to the following terms:	
	Walsh correlation diagram, Symmetry Adapted Linear Combinations (SALCs), Ligand Group orbitals (LGOs)	
	iii. Transformation of atomic orbitals into appropriate symmetry types	

Semester V – Theory	Semester	V —	Theor	y
---------------------	----------	-----	-------	---

	iv. Examples of other molecules (consider only σ -bonding): BeH ₂ , H ₂ O	
	Unit – II: Solid State materials	15L
Unit II	a). Structures of Solid State Materials	(9L)
	i. Importance of solid state chemistry	
	ii. Explanation of terms: Crystal lattice, Lattice points, Unit cells & Lattice constants	
	iii. Classification of solids on the basis of bonding	
	iv.Close packing of rigid spheres (HCP, CCP) packing density in simple cubic, BCC, FCC and HCP lattices, Relationship between density of unit cell, lattice parameters.	
- 1	v. Point defects with respect to Frenkel and Schottky defects	
	(Numerical problems expected)	
	vi. Tetrahedral and octahedral interstitial voids in CCP lattice, tetrahedral holes, limiting radius ratios for different coordination numbers and their significance, calculation of limiting radius ratio for coordination number 4.	
1	b. Superconductivity	(3 L)
	i. Superconductivity, Meissner effect	
	 ii. Different superconducting materials: conventional superconductors, organic superconductors, alkali metal fullerides (A₃C₆₀) and high temperature Superconductors 	
	iii. Applications of superconducting materials	
	c. Metallic Bonding	(3L)
	i. Band theory	
	ii. Explanation of electrical properties of conductors, insulators and semiconductors (n and p-types) on the basis of band theory	
	Unit III: Chemistry of elements	15L
Unit III	a. Inner transition elements	(1L)
	i. Introduction	
	ii. Shapes of f-orbitals	

		1
	iii. Position of f-block elements	
	iv. Comparison between lanthanides and actinides	
	b. Lanthanide Series	(11L)
	 i. Chemistry of lanthanides with reference to: lanthanide contraction, oxidation states, magnetic and spectral properties ii. Occurrence, extraction and separation of lanthanides by ion exchange & solvent extraction method iii. Applications of lanthanides 	
	c. Actinide Series	(3L)
	i. Chemistry of Uranium: occurrence, extraction (solvent extraction method)	
	ii. Properties and applications	
	Unit IV: Solution chemistry	15L
Unit IV	a. Chemistry of Non- Aqueous Solvents	
	1. Introduction	
	ii. Classification of solvents and importance of non -aqueous solvents	
	iii. Physical and Chemical properties	
	 iv. Characteristics and study of liquid ammonia, dinitrogen- tetraoxide and acetic acid as non -aqueous solvents with respect to a. acid -base reactions and b. redox reactions c. Solvolysis d. Complex formation reactions 	
Refere	nces:	
1.	Robert L.Carter, <i>Molecular Symmetry and Group Theory</i> John Wiley and Sons(roprint 2012)	
2.	K. Veera Reddy, Symmetry and Spectroscopy of Molecules, New Age Internation Publishers 2 nd Edition (2009)	onal
3.	P.K.Bhattacharya, <i>Group Theory and its Chemical Applications</i> , Hin Publishing House, 2 nd Edition (Reprint 2014)	malaya
4.	F. Albert Cotton, <i>Chemical Applications of Group Theory</i> , Wiley Student Edition (2006)	on,
5.	Shriver & Atkins, Atkins, Overton, Rourke, Weller, Armstrong, <i>Inorganic Cher</i> International Student Edition, Oxford University Press (2009)	mistry,

B.Douglas, D. McDaniel & J. Alexander, *Concepts and Models of Inorganic Chemistry*, 3rd Edition John Wiley and Sons (1964)

- 7. J. Barrett, *Structure and Bonding*, RSC publication (2001)
- 8. Satya Prakash, G.D. Tuli, R.D. Madan, S.K. Basu Advanced Inorganic Chemistry, S.Chand Publication.(Reprint 2011)
- 9. F.A. Cotton & G. Wilkinson, *Advanced Inorganic Chemistry*, Wiley Publication, 3rd Edition,
- 10. Gary Wulfsberg, *Inorganic Chemistry*, Viva Student Edition, Viva Books Pvt. Ltd, Indian Edition (2002)

Semester V– Practical

Course:	Practical Course work in Physical and Inorganic Chemistry – I		
SCHE5PR1	(Credits: 4; Practicals/Week: 2)		
	Objectives:		
	\succ To learn the method of determination of rate constant		
	conductometrically		
	> To apply the theoretical knowledge of electrochemical cells in		
	determination of k _{sp}		
	To understand experimental determination of isoelectric point using		
	pH metry		
	To understand the shape and geometry of various complexes having		
	different ligands attached to it		
	> To understand the set up of glassware and apparatus to conduct		
	volumetric experiments in inorganic Chemistry		
- C-	To understand the use of various indicators for specific metal ions in		
	titration		
	A MATTER STATE OF A MAIL		
	Learning Outcomes:		
	Thorough understanding of the practical determination of reaction rates		
	Hands on experience on the practical evaluation methods of adsorption		
- K.	phenomenon		
10	Development of practical knowledge for the determination of various		
1	physical parameters/constants by selection of appropriate electrometric		
- 1	method		
	Learners will be able to describe the oxidation number of the central		
	metal ion, shapes and structures of coordination complexes prepared		
	with coordination numbers ranging from 4 to 12		
	Learners will have the requisite technical skills to prepare a complex		
	and drying it at an appropriate temperature and pressure		
	> Learners will have an understanding of role of different indicators		
	specific for metal ions operating at different pH values		
	DIIVOLAT CHEMISTON DDA CTICAT		
	PHISICAL CHEMISIKI PRACTICAL		
	Non-Instrumental Experiments		
	Non- Instrumental Experiments		
	1) Chemical Kinetics		
	i) To determine energy of activation for acid catalyzed hydrolysis		
	of methyl acetate.		
	2) Surface phenomena		
	ii) To investigate the adsorption of acetic acid on activated		
	charcoal and to test the validity of Freundlich adsorption		
	isotherm		
	Instrumental Experiments		
	5) Potentiometry		
	iii) To determine amount of acetic acid and trichloro acetic acid in		
	given solution potentiometrically		

4) Conductometry

iv) To determine the basicity of citric acid conductometrically.

5) pH-metry

v) To determine the acidic and basic dissociation constants of amino acids and hence to calculate the isoelectric point

6) Colorimetry

vi) To determine rate of reaction for bleaching of crystal violet using sodium hydroxide.

INORGANIC CHEMISTRY PRACTICAL

A. Preparations

- i. Potassium diaquo bis- (oxalato) cuprate (II) K₂[Cu(C₂O₄)₂].H₂O
- ii. Dichloro bis(dimethylsulfoxide-O)copper (II) [CuCl₂ (DMSO)₂]
- iii. Bis(ethylenediamine)iron (II) sulphate [(C₂H₄N₂H₄)₂Fe]SO₄.4H₂O
- iv. Bis(acetylacetanato)copper (II). [(C₅H₇O₂)₂Cu] or [Cu(acac)₂]

B. Volumetric analysis

- i. Determination of magnesium from the supplied commercial sample of Milk of Magnesia tablet
- **ii.** Estimation of Nickel (II) complexometrically using Murexide indicator (Students are expected to standardize the supplied EDTA solution using ZnSO₄.7H₂O).
- iii. Estimation of Cu by iodometric titration

Course: SCHE503	Advanced Organic Chemistry - I (Credits: 4 Lectures/Week: 4) <u>Course description:</u> Nomenclature and Stereochemistry of Organic compounds, Mechanism of Organic reactions, Photochemistry, Pericyclic reactions and Organometallic Chemistry	
	Objectives:	
	> To understand the mechanism of varied organic reactions	
	> To visualize the stereochemical features of organic compounds	
	> To name the organic compounds on the basis of IUPAC rules	
	To write the reactions of organometallic compounds of Magnesium Lithium, Copper & Zinc	m,
	> To explain the concept of photochemical reactions	
	To understand the types of pericyclic reactions & their application	18.
1	 To study the chemistry of heterocyclic compounds 	10.
- 1	 To study the art of organic synthesis and the considerations thereo 	of
-	I corning Outcomes:	<i>//</i>
	 Learning Outcomes: Learner is capable of predicting the outcome (stereochemistry, regioselectivity) of a chemical reaction of a structure based on the mechanistic pathway followed Learner is able to interpret the strain in molecules with respect to characteristic stereochemical attributes of a system Learner is able to apply the reactions involving metals in organic synthesis of commercially important products Learner is able to correlate the structures of biomolecules & drugs characteristic heterocyclic compounds & after learning their chemican design experiments for synthesis of biologically active compose and green & sustainable chemistry considerations 	s to histry, bunds ctivity
	Unit – I: Mechanism of Organic Reactions	15L
Unit I	a. Elimination reactions: mechanism & stereochemistry	(5L)
	i. E_1 ii. E_2	
	Nature of substrate, Leaving group, Structure of base, Solvent	
	iv. Saytzeff & Hofmann elimination	
	$V. E_1 CB$	
	vi. Pyrolytic elimination: Cope, Chugaev, Pyrolysis of	
	b. Reaction of carbonyl groups with nucleophiles (mechanism	(AT)
	expected)	(4L)
	i. Oxygen containing nucleophilesii. Nitrogen containing nucleophiles	

Semester V – Theory

	c. Rearrangement reactions	(4L)
	i. Migration to electron deficient carbon: Pinacol-pinacolone, Benzil-benzillic acid	
	ii. Migration to electron deficient nitrogen: Hofmann,	
	Beckmann	
	iii. Migration involving carbanion: Favorskii	
	d. Name reactions	(2L)
	i. Michael reaction	
	ii. Wittig reaction	
	Unit – II: Stereochemistry of Organic Compounds I	15L
Unit II	1 Symmetry Floments Symmetry Operations & Melecular	
	chirality	
	a. Symmetry elements	(2L)
	i Point (inversion point of symmetry)	
	ii Line (proper, improper axis of symmetry)	
	iii. Plane (plane of symmetry- vertical, horizonal & dihedral)	
	b. Symmetry operations	(2L)
	i. Rotation	
	ii. Reflection	
	iii. Inversion	
	iv. Rotation-reflection	
	c. Asymmetry versus dissymmetry (with respect to tartaric acid- meso and the optically active isomers)	(1L)
	d. Molecular chirality of:	(2L)
	i. Cumulenes	
	ii. Biphenyls	
	iii. Introduction to Spirans	
	2. Cycloalkanes: conformations & configurations	
	a. Strains in cycloalkanes (recapitulation) & principle strains in small, normal & medium ring compounds	(1L)
l	a. Baeyer's strain	

	ii. Pitzer strain	
	iii. Transannular strain	
	iv. Van der Waals strain	
	b. Configurations & stereoisomerism in substituted small ring cycloalkanes (3 and 4-membered)	(1L)
	c. Conformations of cycloalkanes	(6L)
	 i. Conformational analysis of cyclobutane (planar versus puckered conformation) ii. Conformational analysis of cyclopentane (planar conformation versus envelope conformation) iii. Conformational analysis of cyclohexane: Relative stabilities of conformations of mono & di- substituted cyclohexane 	
	Unit III: Nomenclature, Organometallic Chemistry, Photochemistry & Pericyclic reactions	15L
Unit III	1. IUPAC Nomenclature	(3 L)
	a. Bicyclic compounds	
	i. Biphenyls	
	ii. Spiro	
	iii. Fused & Bridged ring	
	b. Cumulenes	
	2. Organometallic Chemistry	(5L)
	a. Introduction: Carbon-metal bond: Nature, types, reactivity.	
	b. Organomagnesium compounds: Grignard reagent: Preparation, structure & stability. Reaction with compounds containing acidic hydrogen, carbonyl compounds, CO ₂ , cyanides and epoxides.	
	c. Organolithium compounds: Preparation using alkyl/aryl halides; Reactions with compounds containing acidic hydrogen, alkyl halides, carbonyl compounds, CO ₂ , cyanides & epoxides.	
	d. Organocopper compounds: Lithium dialkylcuprates- Preparation, Reactions with aliphatic, aromatic, vinylic halides	
	e. Organozinc compounds: Reformatsky reaction, Simmon-Smith reaction with mechanism & applications	
	3. Photochemistry	(4L)
	a. Introduction:	
	i. Difference between thermal & photochemical reactions	
	ii. Jablonski diagram	
	111. Singlet & Triplet states	

	iv. Allowed & forbidden transitions	
	v. Photosensitization	
	b. Photochemical reactions:	
	i. Photoisomerisation of olefins	
	ii. Di- π methane rearrangement	
	iii. Norrish Type I & Type II	
	iv. Photoreduction of benzophenone to benzpinacol	
	4 Pericyclic Reactions	(3L)
	a Introduction to pericyclic reactions: Definition & characteristics	
	b Types of pericyclic reactions with examples:	
	i Flectrocyclisation	
	ii Cycloaddition	
	iii. Sigmatropic rearrangement	
		1.51
	Unit IV: Synthetic Organic Chemistry, Green Chemistry & Heteroeyelic chemistry I	15L
	meterocyclic chemistry i	
Unit IV	1. Logic of Chemical Synthesis	(6L)
	a. Concept of yield- stepwise & overall	
	b. Selectivity- chemo-, regio-, stereo- (enantio- &diastereo-)	
	c. Types of synthesis- linear, convergent & multicomponent with examples	
	d. Introduction to retrosynthesis	
	i. Terms- Target molecule (TM), retrosynthetic analysis.	
	FGA. FGI. Disconnection. synthon & reagent	
	ii. Retrosynthetic analysis of simple alcohols, carbonyls,	
	alicyclic & aromatic compounds	
	e. Protecting groups in organic synthesis:	
	i. Alcohols	
	ii. Amines	
	iii. Carboxylic acid	
	2. Green Chemistry	(2L)
	a. Introduction, definition, need & importance	
	b. Principles of Green Chemistry	
	c. Atom economy, E-factor; calculation & significance	
		(7L)
	3. Heterocyclic Chemistry- I (7 lectures)	(12)
	a. Nomenclature: Hantzsch-Widman nomenclature of heterocyclic	
	compounds	
	b. Introduction: Electronic structure and aromaticity of furan,	
	pyrrole, thiophene & pyridine.	
	c. Preparation: Paal-Knorr synthesis of furans, pyrroles and	
	thiophenes & Hantzsch synthesis of pyridine	
	d. Reactivity:	
	 Pyrrole, Furan & Thiophene towards ESR Pyridine towards ESR & NSR 	

	e. Basicity of nitrogen heterocycles
	i. 5- membered heterocycles: Halogenation, nitration,
	sulfonation, Vilsmeier Haack reaction, Friedel crafts
	reaction; unusual reactions of furan: Diels Alder, ring
	opening reactions
	n. Pyriame: Sunonation; reduction; Chichibabin reaction.
Refere	ences:
1.	Finar, I. L. (2012) <i>Organic Chemistry (Volume 1)</i> Dorling Kindersley (India) Pvt. Ltd. (Pearson Education)
2.	Finar, I. L. (2002) Organic Chemistry (Volume 2: Stereochemistry and the
	Chemistry of Natural Products) Dorling Kindersley (India) Pvt. Ltd. (Pearson Education)
3.	McMurry, J.E. (2013). Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning India Edition
4.	Clayden, J.; Greeves, N.; Warren, S.; Wothers, P. (2012) Organic Chemistry. Oxford University Press
5.	Solomons, T.W.G. (2009). Organic Chemistry. John Wiley & Sons, Inc.
6.	Barton, D.; Ollis, D. (2009). Comprehensive Organic Chemistry- The synthesis and
	reactions of Organic Compounds. Pergamon Press
7.	Kalsi, P. S. (1990) Textbook of Organic Chemistry 1st Ed. New Age International
	(P) Ltd. Pub.
8.	Eliel, E. L.; Wilen, S. H. (1994) <i>Stereochemistry of Organic Compounds</i> , Wiley & sons
9.	Kalsi, P. S. (2005) Stereochemistry, Conformation and Mechanism. New Age International
10.	Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. (2012). Practical
	Organic Chemistry, 5th Ed., Pearson Education
11.	March, J. (2007). March's, Advanced Organic chemistry, 6th edition, John Wiley & sons
12.	Sykes, P. (2009). A guide book of mechanisms in Organic Chemistry, 6 th edition, Pearson Education
13.	Bruckner, R. (2005). Advanced Organic Chemistry-Reaction Mechanisms. Academic Press
14.	Ahluwalia, V.K.; Parashar, R.K. (2006) Organic Reaction Mechanisms, Narosa
	Publishing House
15.	Mukherji; Singh; Kapoor. (2002) <i>Reaction Mechanisms in Organic Chemistry</i> . McMillan
16.	Carey, F. A.; Sundberg, R. J. (2007). Advanced Organic Chemistry- Part A & B, 5 th Edition. Springer
17.	Miller B.; Prasad R. (2004). Advanced Organic Chemistry – Reactions and Mechanisms, Pearson/Prentice Hall
18.	Singh J.; Yadav L. (2011), Advanced Organic Chemistry, Pragati Prakashan
19.	Nasipuri, D. (2012) Stereochemistry of Organic compounds – Principles & Applications, New Age International Ltd.
20.	Robinson, M. (2005). Organic Stereochemistry. Oxford University Press

- 21. Gilbert A.; Baggott J. (1991), *Essentials of Molecular Photochemistry*, Blackwell Scientific Publications
- 22. Paula Y. Bruice; Organic Chemsitry, Eighth edition, Pearson Publication
- 23. Lancaster M.; (2016) Green Chemistry: An Introductory Text, RSC publishers
- 24. Sainsbury M., Heterocyclic Chemsitry, RSC publication

Course:	Advanced Analytical Chemistry - I (Credits: 4 Lectures/Week: 4)		
SCHE504	<u>Course description:</u> Sampling and Treatment of Analytical Data, Methods		
	of separation-I, Optical methods and titrimetric analysis		
	Objectives:		
	To provide a basic knowledge and understanding of core		
	principles of analytical chemistry		
	> To introduce basic analytical techniques and practical aspects of		
	classical chemical analysis		
	> To introduce stake holders to various modern instrumental		
	methods of analysis and separation techniques		
	To introduce different methods of sampling before the actual		
	analysis of sample by different Analytical techniques		
-	To understand various methods of volumetric analysis and		
- E	principle babind each method		
	To make beginning enough shout the applicability of evolution		
	F To make learners aware about the applicability of analytical		
	chemistry in various fields		
	Learning Outcomes:		
- E.	Learner is equipped with the knowledge of different classes of		
- N	chemical analysis and is capable of making a choice of a method		
	based on various practical aspects of analysis.		
	Understanding of the sampling techniques according to matrix variations and introduction to statistical treatment of data		
	Learner is capable of correlating the number of extractions with		
	extraction efficiency and is able to put it to practice in		
	experiment.		
	\succ Learner is able to design experiments for analysis based on		
	specific interactions of analyte.		
	Learner is able to extrapolate the knowledge of chemical analysis		
	to industry and to research.		
Unit-I	Sampling and Treatment of Analytical Data	15L	
	1. Sampling	6L	
	a) Introduction to sampling:		
	Terms involved, importance of sampling, sampling techniques		
	b) Sampling of gases:		
	i. Ambient and stack sampling		
	11. Equipment used		
	c) Sampling of liquids		
	i. Fromogeneous and neterogeneous inquids		
	d) Sampling of solids		
	i. Methods and equipment used		
	ii. Sampling of solids		
	iii. Importance of particle size and sample size		
	iv. Samples used, need for the reduction in the sample size		
	v. Methods of reduction in sample size		

	vi. Collection, preservation and dissolution of the sample	
	2. Treatment of Analytical Data:	9L
	 a) Error-Types of errors Absolute and relative error. Constant and proportionate errors Determinate and indeterminate errors-Types of determinate errors, their classification on the basis of source and different method of its minimization. Accuracy and precision Methods of measurement of error- Measures of dispersion central tendency: mean, median, average deviation, relative average deviation, standard deviation, variance, coefficient of variation Gaussian distribution curve, distribution of random errors. student's 't', confidence limits and confidence interval, criteria for rejection of results-2.5d rule and 4d rules and Q-test, F test, chi-square method, testing of significance, null hypothesis, methods of averages and least square method. (Numerical problems expected) 	
Unit II	Methods of Separation – I	15L
	1. Solvent Extraction	6L
	 a) Recapitulation b) Factors affecting extraction: Chelation, Ion pair formation and Solvation c) Effect of pH on percent extraction i) Graph of percentage extraction versus pH ii) Concept of [pH] and its significance (derivation not expected) d) Craig's counter current extraction: Principle, apparatus and applications e) Synergistic solvent extraction- principle, factors affecting f) Solvent extraction with crown ethers: Introduction g) Solid phase extraction: Principle, method and applications with special reference to water and industrial effluent analysis h) Comparison of solid phase extraction and solvent extraction 	
	2. High Performance Liquid chromatography (HPLC) and High Performance Thin Layer Chromatography (HPTLC)	9L
	(I) High Performance Liquid chromatography (HPLC)	(5L)
	 a) Introduction and Principle b) Instrumentation- Solvent Reservoir, Degassing system, Pumps- (reciprocating pumps, screw driven-syringe type pumps, pneumatic pumps, advantages and disadvantages of each pump), Pre column, Sample injection system, HPLC Columns, Detectors (UV – Visible detector, Refractive index detector) c) Applications of HPLC: d) Qualitative and Quantitative applications e) Introduction and Principle 	

 f) Instrumentation- Solvent Reservoir, Degassing system, Pumps- (reciprocating pumps, screw driven-syringe type pumps, pneumatic pumps, advantages and disadvantages of each pump), Pre column, Sample injection system, HPLC Columns, Detectors (UV – Visible detector, Refractive index detector) g) Applications of HPLC: h) Qualitative and Quantitative applications 	
 a. Introduction and Principle b. Stationary phase, Sample application and mobile phase c. Detectors d. Scanning densitometer- Components e. Types of densitometer- Single beam and Double beam. f. Fluorometric Detector g. Advantages, disadvantages and applications of HPTLC h. Comparison between TLC and HPTLC 	
i. Optical Methods	151
 Optical Methods 1. Atomic Spectroscopy: Flame Emission spectroscopy (FES) and Atomic Absorption Spectroscopy (AAS) a) Introduction, Energy level diagrams, Atomic spectra, Absorption and Emission Spectra b) Flame Photometry – i) Principle ii) Instrumentation (Flame atomizers, types of Burners, Wavelength selectors, Detectors) c) Atomic Absorption Spectroscopy – Principle, Instrumentation (Source, Chopper, Flame and Electrothermal Atomiser) d) Quantification methods of FES and AAS – i) Calibration curve method ii) Internal standard method e) Comparison of FES and AAS 	ISL 8L
 2. Molecular Fluorescence and Phosphorescence Spectroscopy a) Introduction, Principle, Jablonski diagram of energy levels b) Relationship between Fluorescence intensity and concentration c) Factors affecting Fluorescence and Phosphorescence d) Instrumentation and applications e) Comparison of Fluorimetry and Phosphorimetry f) Comparison of fluorescence with Absorption methods 	4L

	3. Turbidimetry and Nephelometry:	3L
	 a) Introduction and Principle b) Factors affecting scattering of Radiation: Concentration, particle size, wavelength, refractive index c) Instrumentation and Applications 	
Unit IV	Titrimetric Analysis	15L
	1. Redox titrations	5L
	 a) Introduction b) Construction of the titration curves and calculation of E_{system}* in case of: i) Fe (II) v/s. Ce (IV) ii) Fe (II) v/s KMnO₄ iii)Fe (II) v/s K₂Cr₂O₇ c) Theory of redox indicators d) Criteria for selection of an indicator e) Use of diphenyl amine and ferroin as redox indicators f) Use of Iodine as redox reagent. (Iodometry and Iodimetry) (Numerical expected) 	
	 2. Complexometric Titrations a) Introduction b) Construction of titration curve c) Use of EDTA as titrant and its standardization d) Absolute and conditional formation constants of metal EDTA complexes e) Selectivity of EDTA as a titrant f) Factors enhancing selectivity with examples g) Advantages and limitations of EDTA as a titrant h) Types of EDTA titrations i) Metallochromic indicators- theory, examples and applications 	6L
	 3. Precipitation Titrations a) Introduction, Argentometric titrations, Construction of titration curves. b) Methods of detecting end point: i) Volhard's method ii) Mohr's method iii) Use of Adsorption indicators 	4L

References:

Common References:

- 1. Christian, Gary. D.; Analytical Chemistry, 5th edition
- 2. Chatwal, Gurdeep R.; Analytical Chromatography, Himalaya publication
- 3. Skoog, Holler, Nieman; Principles of Instrumental Analysis, 5th Edition
- 4. Skoog, West, Holler, Principles of Analytical Chemistry, 7th Edition

Unit-I

1. Crosby, Neil T., Patel, Indu, General Principles of Good Sampling Practice, Royal Society of Chemistry.

Harvey, David, Modern Analytical Chemistry, McGraw-Hill Higher Education, 1999.

Unit-II

- 1. Khopkar, S. M.; *Basic Concepts of Analytical Chemistry*, New Age International Pvt Limited
- 2. Dean, J A, Reinhold, Van Nostrand; Chemical methods of separation, 1969.
- 3. Sethi, P.D.; *High Performance Thin Layer Chromatography*, CBS Publisher and Distribution
- 4. Kumar, Prem; *High Performance Thin Layer Chromatography in Food analysis,* CBS Publisher and distributer
- 5. Mahajan, Supriya S.; Instrumental methods of Analysis, Popular Prakashan Ltd
- 6. Sharma, B. K.; Instrumental Methods of Chemical Analysis, Goel Publishing House.

Unit-III

1. Dean, Willard Merritt; *Instrumental methods Of Analysis*, 7th Edition, CBS Publisher and Distributors Pvt Ltd

Unit-IV

- 1. Jeffery, G. H.; Bassett, J.; Memdham, J., Denney, R C; *Vogel's Textbook of Quantitative Chemical Analysis*, 6th Edn, ELBS with Longmann (2009)
- 2. Skoog, West & Holler, Fundamentals of Analytical Chemistry, 8th Edition (2003)
- 3.

Course	Dreatical Course work in Organia and Analytical Chamistry				
SCHE5PR2	IESPR2 I (Credits: 4 Practicals/Week: 2)				
	Objectives:				
	 To identify the nature of the components of a binary mixture To separate the components of a binary mixture by chemical/physical method To purify the components of binary mixture by recrystallization/distillation To identify a component of a binary mixture To provide practical knowledge and hands-on training of analytical chemistry and instrumentation To inculcate an aptitude for experimentation and treatment of data in the learner. To provide knowledge on preparation of analytical reagents, solutions and their molar calculations To understand applications of analytical chemistry in various fields. 				
	 Learning Outcomes: Learner will be able to adjudge the method of separation (physical or chemical) for a given mixture of organic compounds Learner will gain skill at quantitative separation of organic compounds in a mixture Learner will be able to ascertain the extent of separation based on weights of isolated compounds, physical constants & identification. Learner will be equipped with standard operating procedure of basic 				
	 analytical instruments Learner will gain the knowledge of preparation of primary standard solutions Learner will be acquainted with the assay of commercial samples 				
	ORGANIC CHEMISTRY PRACTICAL				
	1. Binary Mixture: Solid-Liquid Binary Mixture & Liquid-Liquid Binary Mixture				
	a. To identify the type of the binary mixtureb. To separate the components by physical methodc. To identify one component of the binary mixtured. To purify the other component of the binary mixture				

Semester V– Practical

ANALYTICAL CHEMISTRY PRACTICAL

Instrumental Experiments

- 1. To determine amount of Fe (II) present in given sample by titrating **against** potassium dichromate potentiometrically
- 2. To determine potassium content of a Fertilizer by Flame Photometry (Calibration curve method)

Non-Instrumental Experiments

- 1 To determine calcium content in market samples of calcium tablets.
- 2. Estimation of Copper by solvent extraction methods
- 3. To determine the amount of persulphate in the given sample solution by back titration with standard Fe (II) ammonium sulphate solution.
- 4. To determine percentage of chloride present in the given sample. (Volhard's method)
- 5. Iodometric determination of available chlorine in a sample of bleaching powder.

Semester V – Theory (Applied Component)

Course: SCHE5AC	Pharmaceutical Chemistry, Dyes, Paints & Pigments -I (Credits: 2.5 Lectures/Week: 4)	
	Course description:	
	Pharmacokinetics, Pharmacodynamics & Drug Development, and	
	Nomenclature & Classification of Dyes & Ontical brighteners: Fibres:	
	Colour & chemical constitution · Unit Processes & Dye Intermediates	
	Objectives:	
	 To acquaint the learner with different terms associated with medicin chemistry, and their significance To understand the pharmacokinetics and pharmacodynamics of a gi drug molecule To recollect various pharmacodynamic agents used for varied system disorders 	al ven mic
1	 To reproduce the classification and nomenclature of dyes and optical 	ıl
	brightners	
	To analyse the colour of a dye/pigment based on the different theoric colour and constitution	es of
K	\blacktriangleright To write the synthesis of a given drug/dve	
	Looming Outcomes:	
	 Learner is able to associate with basic terms involved in medicinal chemistry and pharmacy Learner is able to apply the drug-receptor interactions to characteri class of drugs, its dosage form and dose frequency Learner is able to predict the brightness of colour of dyes based on theories of colour for its suitable application Learner is able to differentiate between various classes of dyes and use thereof in day to day life 	stic the the
	PHARMACEUTICAL CHEMISTRY	
Unit I	Unit – I: Routes of Drug administration, Pharmacokinetics & Drug development	15L
	1. General Introduction	(02)
	 a) Definitions- Pharmacology, Pharmacodynamics, Pharmacokinetics, Pharmacophore, Toxicology, Pharmacon, Prodrug, Half-life efficacy 	
	 b) (i) Definition of drug (WHO) (ii) Characteristics of an ideal drug (iii) Classification of drugs (iv) Lipinski's Rule of 5 	
	 c) Drug Nomenclature: Chemical name, non-proprietary name (Generic name), proprietary (Brand) name 	

ſ		
	2. Factors governing choice of routes of Drug administration	(04)
	a) Factors governing choice of route	
	b) Local Routes-Topical, optic and ocular	
	c) Systemic routes- oral; sublingual; rectal; nasal; parenteral-	
	intramuscular, intravenous, intrathecal and intracardiac	
	d) Dosage forms	
	e) Drug Formulations: sustained release formulations and its	
	educations, sustained release formulations and its	
	advantages	
	3. Pharmacokinetics:	
	the provide the second	(05)
	a) ADME (Absorption, Distribution, Metabolism & Excretion)	
	b) Metabolism- Phase I and Phase II metabolic reactions	
	c) Excretion (with correlation to drug dosage)	
6		
1	4. Mechanism of drug action:	(04)
	a) Receptors	
	b) Agonist	
	c) Antagonist	
- V	d) Drug-receptor interaction:	
1	e) Theories of Drug-Receptor interaction: Names (any one in detail)	
	f) Drug Potency	
	g) Drug Assay	
	h) LD_{50}	
	i) ED_{50}	
	i) Therepoutic Index	
	J) Therapeutic fildex	
	k) bioavanaointy	
	I) Log P	
	AND MOUSE IN	
	Unit – II: Pharmacodynamics & Pharmacodynamic agents	15L
Unit II	1 Pharmacodynamic agents	(03)
	1. Thurmacouynumic agents	
	a) <u>CNS drugs</u> : Classification based on pharmacological action (CNS	
	depressants & its sub-classification; and CNS stimulants)	
	i. Benzodiazepines (Diazepam)	
	ii Alcohols	
	iii Barbiturates (Classification and Mode of action)	
	in. Darbiturates (Classification and Wode of action)	
	iv. Hydantoin (Phenytoin & synthesis)	
	v. Phenothiazines (Chlorpromazine)	
	vi. Amphetamine (Phenylethylamine)	
	vii. Oxazolidinediones (Trimethadione)	
	Synthesis of trimethadione	
	b) Analgesics, antipyretics & NSAIDs	(01)
	i. Analgesic & antipyretic: p-Aminophenols (paracetamol)	
	ii. Mechanism of inflammation mode of action of NSAIDs	
		1

	(COX inhibitors) & side effects Aspirin, sodium	
	diclofenac	
	iii. Cvclohexanols (Tramadol)	
	Synthesis of Paracetamol and Tramadol	
	c) <u>Antihistamines</u>	(02)
	i. Mechanism of histamine release & its action	
	ii. H_1 and H_2 receptors & mode of action of antihistamines	
	iii. First generation (sedating histamines):	
	Diphenylhydramine (Synthesis)	
	iv. Second generation (non-sedating histamines): Cetrizine	
	(Synthesis from 4-chlorobenzhydryl chloride)	
	d) <u>Antidiabetic agents</u>	(02)
	i. Types of diabetes mellitus (Type I & II), insulin & its	
15	mode of action	
1.1	ii. Insulin therapy- Recombinant DNA technology	
	iii. Oral hypoglycemic drugs: mode of action	
	iv. Sulfonylureas;	
	First generation (tolbutamide)	
	Second generation (glibenclamide)	
- U	v. Biguanides (metformin)	
	vi. Thiazolidinediones (pioglitazone)	
	vii. α-Glucosidase inhibitor (miglitol)	
	viii. Synthesis of tolbutamide	
	MI 1 - 1 / //	
	e) Anti-Parkinson Drugs	(02)
	c) <u>And Farkinson Drugs</u>	(02)
	i. Idea of Parkinson's disease -symptoms and possible	
	causes	
	ii. Ethopropazine hydrochloride (phenothiazines)	
	iii. Leva dopa (α-amino acids)	
	iv. Synthesis of leva dopa	
	f) <u>Anti-inflammatory drugs</u>	(02)
	i Machanism of inflammation and various inflammatory	
	aconditions	
	ii Staroida (Dradnisolone)	
	iii N emplembranilie epide (A calefonee)	
	in. N-al ylantin annic acius (Acelolenac)	
	iv. Synthesis of Acelolenac	
	g) Drugs for Respiratory System	
	i. Expectorants	(03)
	ii. Mucolytes	
	iii. Decongestants	
	iv. Antitussives	
L		

	v.Phenyl methylamines (Bromhexine)vi.Phenyl ethylamines (pseudoephedrine)vii.Synthesis of pseudoephedrine	
	DYES, PAINTS & PIGMENTS	
	Unit III: Nomenclature & Classification of dyes & Optical brighteners, Fibres	15L
Unit III	1. Introduction to dye-stuff industry	(01)
	a. Definition b. Colour, chromophere & auxochrome	
	c. Solubility linearity conlanarity	
	d Fastness substantivity & economic viability	
	e. Mordants with examples	
	2. Dve nomenclature	(01)
- 1		
	a) Abbreviations used in commercial dyes- G, O, R, B, K, L, C, S, H, 6B, GK, 6GK	
	b) Naming of dyes by colour index	
		(03)
	3. Types of fibres	
	a) Natural: cellulosic & proteinaceous (wool, silk & cotton)	
	structures & names of dyes applied to different fibres	
	b) Semi-synthetic: definition & examples	
	c) Synthetic: nylon, polyesters & polyamides- structures & names of	
	dyes applied	
	d) Blended fabrics: definition & examples	
	4. Forces binding dyes to fibres : Ionic, Hydrogen bond, van der Waal's & covalent linkages	(02)
	5. Classification of Dyes	(01)
	 a) <u>Classification of dyes based on origin</u> Natural dyes- definition, limitations, examples (henna, turmeric, saffron, indigo, madder, chlorophyll) Synthetic dyes- definition, milestones in development of synthetic dyes 	
	b) Classification of dyes based on constitution	
	by <u>Classification of uyes based on constitution</u>	(01)
	 c) <u>Classification of dyes based on dyeing methods</u> i. Basic operations involved in dyeing process: preparation 	(01)
		1

	of fibres, preparation of dyebath, application of dyes, finishing ii. Dyeing method of cotton: direct dyeing, vat dyeing, mordant dyeing, disperse dyeing	
	 d) <u>Classification of dyes based on application</u> (examples with structures) Acid Dyes- Orange II Basic dyes- Methyl violet Direct cotton dyes- Benzofast yellow 5GL 	(02)
	 iv. Azoic dyes- diazo components: Fast Yellow G, Fast Orange R v. Mordant dyes- Eriochrome Black A, Alizarin vi. Vat dyes- Indanthrene Brown RRD vii. Sulphur dyes- Sulphur black T (no structure) viii. Disperse dyes- Celliton Fast Brown 3R ix. Reactive dyes- Cibacron Brilliant Red B 	(02)
	 6. Optical brighteners a) Introduction & important characteristics b) Classes- stilbene, coumarin, heterocyclic vinylene derivatives, diaryl pyrazolines, naphthylamide derivatives c) Structure of Blankophor R & Tinopal BV 	
	Unit IV: Colour & Chemical constitution, Unit Process & Dye Intermediates	15L
Unit IV	1. Colour & Chemical Constitution of Dyesa) Absorption of visible light, colour of wavelength absorbed,	(02)
	 complementary colour b) Relation between colour and chemical constitution: Witt's Theory: chromophore, auxochrome, bathochromic shift, hypsochromic shift, hypochromic & hyperchromic effect 	(04)
	 ii. Armstrong theory (quininoid theory) & its limitations iii. Valence bond theory, comparative study and relation of colour in the following classes of compounds/dyes: benzene, nitrobenzene, nitroanilines, nitrophenols, benzoquinones, azo, triphenylmethane, anthraquinones iv. Molecular Orbital Theory 	
	2. Unit process	(04)
	 a) Introduction to primaries & intermediates b) <u>Unit processes</u>: definition & reagents, examples of the following 	

	unit p	rocesses with reaction conditions (mechanism not expected)	
	i.	Nitration	
	ii.	Sulphonation	
	iii.	Halogenation	
	iv.	Diazotization (3 different methods & its importance)	
	v.	Ammonolysis	
	vi.	Oxidation	
			(05)
3. Dy	e Interi	mediates	()
a)	Benze	ene derivatives: Preparation of:	
ŕ	i.	benzenesulphonic acid	
	ii.	1,3-benzenedisulphonic acid	
	iii.	phenol	
	iv.	resorcinol	
-	v.	sulphanilic acid	
	vi.	o-, m-, p-chloronitrobenzenes	
	vii.	o-, m-, p-nitroanilines	
	viii.	o-,m-, p-phenylene diamines	
b)	Napht	thalene derivatives: Preparation of:	
- 1	i.	α , β -naphthols	
. 1	ii.	α , β -naphthylamines	
8.3	iii.	Schaeffer's acid	
	iv.	Tobias acid	
31	v.	Naphthionic acid	
	vi.	N-W acid	
	vii.	Cleve-6-acid	
	viii.	H-acid	
1.1	ix.	Naphthol AS	
	ix.	Naphthol ASG	
c)	Anthr	acene derivatives: Preparation of:	
	i.	1-nitroanthraquinone	
	ii.	1-aminoanthraquinone	
	iii.	anthraquinone-2-sulphonic acid	
	iv.	1-chloroanthraquinone	
	v.	2-chloroanthraquinone	
	vi.	benzanthrone	

References:

Unit I and II

- 1. Siverman, Richard, B., *Organic Chemistry of Drug Design and Drug Action*, 2nd Edition. (2005). Elsevier (Academic Press)
- 2. Bruice, Paula Y., Organic Chemistry, 8th Edition (2013). Pearson Education India.
- 3. Voet, Donald, &Voet, Judith G., *Biochemistry*, 4th Edition, (2011). International Student version
- 4. Sriram, D., Yogeeswari, P., *Medicinal Chemistry*, 2nd Edition, Pearson
- 5. Kar, Ashutosh, *Medicinal Chemistry*, Revised 3rd Edition, (2006).
- 6. Alagarsamy, V., Textbook of Medicinal Chemistry, Vol. 2, 3rd Edition. CBS

Course:	Practical Course work in Organic and Analytical Chemistry -		
SCHE5PR2	I (Credits: 4 Practicals/Week: 2)		
	Objectives:		
	 To identify the nature of the components of a binary mixture To separate the components of a binary mixture by chemical/physical method To purify the components of binary mixture by recrystallization/distillation To identify a component of a binary mixture To provide practical knowledge and hands-on training of analytical chemistry and instrumentation To inculcate an aptitude for experimentation and treatment of data in the learner. To provide knowledge on preparation of analytical reagents, solutions and their molar calculations 		
- 11	> To understand applications of analytical chemistry in various fields.		
- 1	⁷ To understand approarions of analytical enomistry in various nerds.		
	Learning Outcomes:		
- 1	 Learner will be able to adjudge the method of separation (physical or chemical) for a given mixture of organic compounds Learner will gain skill at quantitative separation of organic compounds in a mixture 		
	 Learner will be able to ascertain the extent of separation based on weights of isolated compounds, physical constants & identification. Learner will be equipped with standard operating procedure of basic 		
	analytical instruments		
	Learner will gain the knowledge of preparation of primary standard solutions		
	Learner will be acquainted with the assay of commercial samples		
	ORGANIC CHEMISTRY PRACTICAL		
	2. Binary Mixture: Solid-Liquid Binary Mixture & Liquid-Liquid Binary Mixture		
	a. To identify the type of the binary mixture		
	b. To separate the components by physical method		
	c. To identify one component of the binary mixture		
	d. To purify the other component of the binary mixture		

AN	ALYTICAL CHEMISTRY PRACTICAL
Inst	trumental Experiments
2.	To determine amount of Fe (II) present in given sample by titrating against potassium dichromate potentiometrically
3.	To determine potassium content of a Fertilizer by Flame Photometry (Calibration curve method)
Non	-Instrumental Experiments
1	To determine calcium content in market samples of calcium tablets.
6.	Estimation of Copper by solvent extraction methods
7.	To determine the amount of persulphate in the given sample solution by back titration with standard Fe (II) ammonium sulphate solution.
8.	To determine percentage of chloride present in the given sample. (Volhard's method)
9.	Iodometric determination of available chlorine in a sample of bleaching powder.

Semester V – Practical (Applied Component)

Course: SCHE5ACPR	Practical Course Work in Pharmaceutical Chemistry, Dyes Paints & Pigments -I (Credits: 2.5 Practicals/Week: 1)
	Objectives:
	 To prepare drug intermediates/drugs/dye intermediates on a bench scale To estimate the concentration of drugs in a given sample, quantitatively To develop the skill of separation of the components of a natural pigment using paper chromatography To handle a colorimeter for estimation of dyes
	Learning Outcomes:
	Learner will be able to plan a synthesis of drug or dye intermediate with respect to the unit processes and operations involved.
	Learner will be equipped with methods of assay of drugs in a given sample.
	Learner will be able to qualitatively identify the pigments in a formulation using chromatographic technique
- 1	Learner will be exposed to basic laboratory instrumental methods for estimation of dyes
1	PHARMACEUTICAL CHEMISTRY PRACTICAL
1	1. Preparation of Paracetamol from p-aminophenol/Aspirin from Salicylic acid
	 Preparation of Phenytoin from urea & benzyl Estimation of Ibuprofen (Back titration method) Estimation of Tincture iodine
	DYES, PAINTS & PIGMENTS PRACTICAL
	1. Preparation of p-nitroacetanilide from acetanilide 2. Preparation of p-nitroaniline from acetanilide
	3. Separation of components of natural pigments by paper chromatography (e.g. chlorophyll)
	4. Colorimetric estimation of methyl orange (determination of λ_{max} is expected)

Evaluation Scheme

A. Evaluation scheme for Theory courses

I. Semester End Examination (SEE)- 60 Marks

II. Internal Continuous Assessment (CA) – 40 Marks

- a. Knowledge and Application based: Online objective test of 20 Marks
- b. Skill based (20 marks): Learner will be assessed on relevant skills pertaining to the course content of a particular paper which could involve but not limited to
 - (i) Review of research paper/ Worksheets/ demonstration of instruments followed by evaluation
 - (ii) Report writing with presentation of visit to Pharmaceutical industry/ Paints/ Pigments industry
 - (iii) Literature review/ survey.

B. Evaluation scheme for Practical courses

I. Semester End Examination (SEE)- 100 Marks per course [SCHE5PR1, SCHE5PR2, SCHE5ACPR]