

JAI HIND COLLEGE BASANTSING INSTITUTE OF SCIENCE

& J.T.LALVANI COLLEGE OF COMMERCE (AUTONOMOUS)

"A" Road, Churchgate, Mumbai - 400 020, India.

Affiliated to University of Mumbai

Program: F.Y.B.Sc. / F.Y.B.A

Proposed Course: Mathematics

Semester: II

Credit Based Semester and Grading System (CBGS) with effect from the academic year 2020-21

F.Y.B.Sc. / B.A Mathematics Syllabus

Academic year 2020-2021

Semester II			
Course Code	Course Title	Credits	Lectures /Week
SMAT 201/ AMAT 201	Calculus II	3	2
SMAT 202	Algebra II	3	2
SMAT2 PR2 /AMAT2 PR2	Practical-II (Based on SMAT 201/ AMAT 201, SMAT 202)	3	2

Course Code:	Course Title : Calculus II Credit	ts: 2	
SMAT 201/	Lectures / week: 3		
AMAT 201			
	Course Description: The aim of this course is to expose students to the		
	beauty of limits, continuity and the concept of differentiation. The first u		
	is based on limits and continuity in which students learn the definition of		
	continuity and sequential continuity and the equivalence between them.		
	Problems based on these concepts are solved rigorously. The next unit is		
	based on differentiability. Here students understand the notion of		
	differentiation of a real valued function and mean value theorems. In the		
	last section the emphasis is on applications of differentiability.	15 L	
Unit I	Limits and continuity	15 L	
	1 c Edefinition of limit of a (nod valued) function. Diskt		
	1. $\epsilon - \delta$ definition of limit of a (real valued) function, Right hand and Left hand limits, Uniqueness of limit when it		
	exists, Algebra of limit of a function, Sandwich theorem.		
	exists, Algebra of mint of a function, Sandwich theorem.		
	2. $\epsilon - \delta$ definition of continuity of a (real valued) function,		
	examples, Sequential continuity		
1.1	3. Algebra of continuous functions, Continuity of f when f is		
	continuous. Continuity of composition of two continuous		
1.34	functions.		
1.1	A 11 T. A 1. V 1		
1.1	4. Examples of discontinuous functions and continuity of constant		
1.1	function, identity function, trigonometric functions, polynomial		
1	functions etc.		
1	Intermediate value theorem and its applications, A continuous function		
	on a closed and bounded interval is bounded and attains its bounds and its		
Unit II	consequences.		
Unit II	Differentiability	15 L	
	1. Differentiation of a real-valued function, examples of		
	differentiable and non-differentiable functions, differentiability		
	implies continuity, Algebra of differentiable functions derivative		
	of a inverse function.		
	2. Chain-Rule, Higher order derivatives, Leibnitz rule, L'Hospital's		
	rule, examples of in- determinate form.		
	3. Rolle's theorem, Lagrange's and Cauchy's mean value theorem,		
	their applications and examples.		
	-		

Unit III	Applications of Differentiation	
 Taylor's theorem and its applications. Definition of local maximum and local minimum, necessary condition, stationary points, first and second derivative test, examples, Graphing of functions using first and second 		15 L
	derivatives.3. Application to economics and commerce, Concave, convex functions, points of inflections.	
	References [1] R.G. Bartle and D.R. Sherbert, Introduction to real analysis, John Wiley and Sons.	
	[2] Ajit Kumar and S. Kumaresan, A basic course in real analysis, CRC press 2014.	
	[3] James Stewart, Calculus: early transcendentals, Cengage, 7th edition 2017.Additional References	
	 (1) Strauss, Bradley and Smith, Calculus, Pearson 3rd edition, 2002. (2)R.R. Goldberg, Method of real analysis, Oxford and IBH, 1984. (3) T.M. Apostol, Calculus Volume I, Wiley and Sons (Asia). (4) K.G. Binmore, Mathematical Analysis, Cambridge university 	
	(4) K.O. Bhillore, Mathematical Analysis, Calibridge university press, 1984.	

Course	Course Title : Algebra II	Credits: 2
Code	Lecture / week: 3	
SMAT 202		
	Course Description: The aim of this course is to introduce Syste	em of
	linear equations and matrices and to understand polynomials over	er R and
	permutations of a set. The first unit is devoted to system of linear	equations.
	We then proceed to introduce permutations, symmetries, cycles and	give its
	applications. In the last unit we introduce polynomials over set of rea	ls and
	complex numbers. We also introduce gcd of two polynomials over R, I	Euclidean
	algorithm and solve problems based on that. Different techniques us	-
	root theorem will enable students to find roots of a polynomial empha	
-	applications of differentiability.	
Unit I	System of linear equations and matrices	15 L
	A SHILL SHILL BEARING	
	1. System of homogeneous and non-homogeneous linaer	
	equations, the solution of system of m homogeneous	
	linear equations in n unknowns by elimination and its	
- N	geometrical interpretation.	
	1 1 23 1 1 1	
	2. Definition of an n-tuple of real numbers, sum of two	
- N.	n-tuples and scalar multiplication of an n-tuple.	
- N	V II /V/	
	3. Matrices with real entries; addition, scalar	
	multiplication and multiplication of matri- ces;	
	transpose of a matrix, types of matrices: zero	
	matrix, identity matrix, diagonal matrices, triangular	
	matrices, symmetric matrices, skew-symmetric matrices, invertible matrices, identities such as (AB) ^t	
	$= B^{t}A^{t}, (AB)^{-1} = B^{-1}A^{-1}$	
	$-\mathbf{D}\mathbf{A}, (\mathbf{A}\mathbf{D}) - \mathbf{D}\cdot\mathbf{A}$	
	1 System of lincon equations in matrix form	
	4. System of linear equations in matrix form, elementary row operations, row echelon form, Gauss	
	elimination method, the system of m homogeneous	
	linear equations in n unknowns has a non-trivial	
	solution if $m < n$.	
Unit II	Permutations	
		15 L
	1. Definition of a permutation of a set, Set of all permutations	
	of the set $\{1, 2,, n\}$ i.e. S_n and its cardinality,	
	Symmetries of are equilateral triangle, square, rectangle.	
	2. Cycles, Composition of permutations, properties of	
	permutations such as every permutation of a finite set can	

r		
	be written as a cycle or a product of disjoint cycles, disjoint cycles commute.	
	3. Transpositions, Any permutation can be expressed as a product of transpositions, order of a permutation, sign of a permutation	
Unit III	Polynomials	15 L
	 Definition of a polynomial, polynomials over the field F where F = Q, R or C, Algebra of polynomials, degree of a polynomial, basic properties. Division algorithm for polynomials over R, gcd of two polynomials and its basic proper- ties, Euclidean algorithm and its applications, roots of a polynomial, relation between roots and coefficients, multiplicity of a root, remainder theorem, factor theorem. A polynomial of degree n has atmost n roots, Complex roots of a polynomial in R[X] occur in conjugate pairs, statement of Fundamental theorem of algebra, a polynomial of degree n. Rational root theorem and its consequences such as p is an irrational number when p is a prime number, roots of unity, 	
	sum of all the root of unity References	
	 [1] S. Kumaresan, Linear algebra, a geometric approach first edition, Prentice hall of India, 2009. [2] Joseph A. Gallian, Contemporary abstract algebra, fourth edition, Narosa publica- tions. 	
	[3] John Fraleigh, A first course in abstract algebra, Pearson,	
	2013	
	[4] Norman L. Biggs, Discrete mathematics, second	
	edition, Oxford university press. (2) I.N. Herstein, Topics in algebra, second edition, Wiley India edition.	
	[5] Serge Lang, Introduction to linear algebra, second edition, Springer	

Semester II – Practical

Course:	Practical I (Based on SMAT 201 and 202) (Credits 3 : Practicals/Week:2)		
SMATPR2	SMAT201		
	Practical for Calculus-II		
	1. Problems on limits and continuity using definition		
Magazita Shir	2. Problems on sandwich theorem and intermediate value theorem.		
	3. Problems on differentiability and Leibnitz rule, L'Hospital's rule		
	4. Problems based on mean value theorems.		
P	5. Problems on local maxima and minima.		
	6. Concavity of curves with graphs.		
	I WILL CAN		
	SMAT202		
	Practical for Algebra-II		
	 Problems of solving homogeneous system of m equations and n unknowns by elimination, problems on row echelon form 		
	 Solving a system Ax = b by Gauss elimination, finding inverse of a matrix if it exists, solutions of system of linear equations. 		
	3. Permutations of a finite set, Symmetries, cycles, compositions of permutations.		
	4. Permutation as a product of 2-cycles, order and sign of a permutation.		
	5. Problems on division algorithm and gcd of two polynomials.		
	 Problems based on factor theorem, remainder theorem and rational root theorem 		
	NA 22		

Evaluation Scheme

Evaluation scheme for Theory courses

I. Continuous Assessment (C.A.) - 40 % - 40 Marks

	Section and and	
Sr. No.	Evaluation type	Marks
1.	C.AI : It will be conducted either using any open source learning management system or by taking a test	20
2.	C.AII : Assignments / Project (maximum 5 students in a group)	20

THEORY PAPER PATTERN

(Q.1/A) Attempt any 1 out of 2.8 Marks each.

(Q.1/B) Attempt any 2 out of 3. 4 Marks each.

Unit II

(Q.2/A) Attempt any 1 out of 2. 8 Marks each.

(Q.3/B) Attempt any 2 out of 3. 4 Marks each.

Unit III

(Q.3/A) Attempt any 1 out of 2. 8 Marks each.

(Q.3/B) Attempt any 2 out of 3. 4 Marks each.

Based on Full Syllabus

Q.4 Attempt any 2 out of 4. 6 marks each.

Practical exam Pattern

- (Q.1) 10 Marks will be for question based on definitions, statements, multiple choice, True False, etc.
- (Q.2) 6 Marks For Journal and 6 Marks for Viva.
- (Q.3) 18 Marks Descriptive type where students have to solve 3 questions of 6 marks each out of 4 given choices.

