

JAI HIND COLLEGE BASANTSING INSTITUTE OF SCIENCE &

J.T.LALVANI COLLEGE OF COMMERCE (AUTONOMOUS) "A" Road, Churchgate, Mumbai - 400 020, India.

Affiliated to University ofMumbai

Program: B.Sc.

Proposed Course: Botany

Semester IV

Credit Based Semester and Grading System (CBGS) with effect from the academic year 2020-21

S.Y.B.Sc. Botany Syllabus

Academic year 2020-2021

Semester IV			
Course Code	Course Title	Credits	Lectures /Week
SBOT401	BRYOPHYTA, PTERIDOPHYTA; GYMNOSPERMS AND ANGIOSPERMS	2	3
SBOT402	ANATOMY, PLANT PHYSIOLOGY AND ENVIRONMENTAL BOTANY	2	3
SBOT403	PLANT TISSUE CULTURE, MOLECULAR BIOLOGY AND RESEARCH METHODOLOGY	2	3

PREAMBLE

Today plant science is a fusion of the traditional components with the modern aspects of biochemistry, molecular biology and biotechnology. Over the years, Botany has shown enormous gain in information and applications owing to tremendous inputs from research in all its aspects. With global recognition of the need for conservation, ecologists have contributed significantly in assessing plant diversity. Taxonomists have explored newer dimensions for the classification of plants. New insights have been gained in functional and structural aspects of plant development by utilizing novel tools and techniques for botanical research. Challenging areas of teaching and research have emerged in ecology and reproductive biology. Concern for ever increasing pollution and climate change is at its highest than ever before. Keeping these advancements in view, are vision of the curriculum at the undergraduate level is perfectly timed. From the beginning of 2019-2020 session; the Botany students of Jai Hind College shall have the benefit of a balanced, carefully-crafted course structure taking care of different aspects of plant science, namely plant diversity, physiology, biochemistry, molecular biology, reproduction, anatomy, taxonomy, ecology, economic botany and the impact of environment on the growth and development of plants. All these aspects have been given due weightage over the six semesters. It is essential for the undergraduate students to acquaint themselves withvarious tools and techniques for exploring the world of plants up to the sub- cellular level. A unit on instrumentation is proposed to provide such an opportunity to the students before they engage themselves with the learning of modern tools and techniques in plant science. Keeping the employment entrepreneurship in mind, applied component has been designed. On the whole, the curriculum is a source of lot of information and is supported by rich resource materials. It is hoped that a student graduating in Botany with the new curriculum will be a complete botanist. Students are encouraged to opt for AAA courses in other subjects like Microbiology, Life Sciences, Chemistry, etc.

Semester IV – Theory

Course	PAPER I: BRYOPHYTA & PTERIDOPHYTA; GYMNOSPERMS &	
code:		
SBOT401	ANGIOSPERMS (Credits:2 Lectures/Week: 3)	
5001401	Learning Objectives:	
		logg in
	Students will continue to learn another important class in	
	Bryophyta i.e Anthocerotae. They will study the lifec	ycie of
	an important genera <i>Anthoceros</i> .	c
	Students will learn the general characters of 2 Clas	
	Pteridophytes i.e. Sphenopsida & Pteropsida and	
	study the economic importance for the same. The	-
	study 2 important genera belonging to these class	es i.e.
	Equisetum and Ophioglossumrespectively.	
200	Students will understand the general characters of	Class
	Cycadophyta of Gymnosperms and study the eco	nomic
	importance for the same. They will study 2 imp	ortant
	genera belonging to this class i.e. <i>Cycas</i> and <i>Zamia</i> .	
	Students will learn the morphology and modificati	ons of
	different floralmembers.	
	They will have a detailed study of a few Angio	sperm
- 39	families prescribed in their syllabus and studyexamp	
1	of economically important plant species of the same.	
	Learning outcomes:	
	Students will be able to differentiate between plant g	groups
	belonging to Bryophytes, Pteridophytes, Gymnos	
	andAngiosperms.	-
	Learning economic importance for these plant group	ps will
	helpstudentsunderstandthepotentialuseofeachgroup.	
	Basic study of parts of the flower and types variati	ons in
	floral morphology along with study of a few fa	
	classifiedasperBenthamandHooker'ssystemwillhelp	
	students to understand the branch of taxonomy.	
Unit I	Bryophyta & Pteridophyta:	15 L
	General characters and economic importance of	
	Anthocerotae	
	Structure, life cycle and systematic positionof	
	Anthoceros	
	General characters and economic importance of	
	Sphenopsida &Pteropsida	
	Structure life cycle, systematic position and	
	alternation of generations in <i>Equisetum</i> and	
	Ophioglossum	
Unit II	Gymnosperms:	15 L
Sinth	Salient features, classification up to orders(with	176
	examples of each) and economic importance of	
	Cycadophyta (Chamberlain's system of	
	Cycadophyta (Chambertam's System Of	<u> </u>

	classification to be followed) Structure life cycle and systematic position of <i>Cycas</i> and <i>Zamia</i>	
Unit III	Angiosperms:	15 L
	Morphology of Inflorescence:	
	Racemose: Raceme; Spike; catkin; corymb;	
	umbel;capitulum	
l	Cymose: Cyme; Uniparous cyme; Biparous	
	cyme; Multiparouscyme	
	Special: Hypanthodium; Cyathium	
	&Verticillaster	
	Modifications of calyx: pappus,spurred	
	Forms of polypetalous and gamopetalous corolla:	
	cruciform, caryophyllaceous, rosaceous,	
- 8	campanulate, infundibuliform, salver shaped,	
- 1	rotate, tubular, bilabiate,ligulate	
	Classification of the following families as per	
	Bentham and Hooker's system of classification:	
- 1	Sterculiaceae, Rutaceae, Myrtaceae, Asteraceae,	
	Verbenaceae, Amaranthaceae andArecaceae.	
	Economic importance of plants belonging tothe	
	above mentioned families.	
Additiona	l References:	
	ashishtaB.R.,Sinha,A.K.&KumarA.,Botanyfordegreestudents	
	ungi, S. Chand, 1st Edition,2010	
	ashishta P.C., Sinha, A. K. & Kumar A., Botany for degree stude ceridophyta, S. Chand, 1st Edition,2005	nts
	ashid A., An introduction to Pteridophyta: Diversity, Developm	ent
	nd Differentiation, Vikas Publishing House,1999	
Va	ashishta P.C., Sinha, A. K. & Kumar A., Botany for degree stude	nts
	ymnosperms, S. Chand, 1st Edition,2005	
	angulee, Das & Datta, College Botany, Volume II, New Central I	Book
•	gency,2006	
	hopraG.L.,Angiosperms,S.Nagin&Co.,1969	-
	narma O. P., Plant Taxonomy, Tata Mc Graw – Hill Publishing C	<i>.</i> 0 .
	d.,1993 urucharan S., Plant systematic, Oxford & IBH publishing Co. Pv	<i>7</i> †
	td., 3rd edition,2012	νι.
	avisP.H.&HeywoodV.H.,PrinciplesofAngiospermTaxonomy,	
	cientific Publishers,2011	

Course	PAPER II: ANATOMY, PLANT PHYSIOLOGY AND	
code:	ENVIRONMENTAL BOTANY	
SBOT402	(Credits:2 Lectures/Week:3)	
	Learning objectives:	
	Students learn the concept of normal and secondary growth in dicot plants. They also learn about the defence mechanism and conducting tissue system in theplants. The topic on the structures of carbohydrates deals with understanding the structures of molecules or products finally formed after photosynthesis (which was covered in sem II) .The topic of respiration then continues to explain how these energy rich carbohydrates are broken down to release energy in the life forms. The student will learn the concept of photorespiration and its significance with respect to reduction in crop plant yield. The study of soil and its profile will help students understand the ecosystems in soil. Community ecology studies will make the student aware of the various methods used inconservation. Thestudentswillbeintroducedtothedifferenttypesof pollutions and pollutants harming the environment.	
	NA K.981.0 777	
	Learning Outcomes: The students will understand importance of defence mechanism in the plants. The students will also able to identify the different types of wood/timber with the help of woodanatomy. With the study of this unit of physiology students will understand all basic interconnecting links between photosynthesis, respiration and photorespiration. They will also have in-depth knowledge of structures of molecules (carbohydrates) which are the photosynthetic products and respiratorysubstrates. Students will be able to grasp the basic concepts in ecology of soil formation and its related factors and they will understand the concept of communityecology Studentswillbesensitized aboutthetypes of pollution and their impact on environment. Case studies will help them relate to environmental issues across the globe.	
Unit I	Anatomy 15L	
	 Normal Secondary Growth in Dicotyledonous stem androot. Mechanical Tissuesystem Tissues providing mechanical strength and support and their disposition 	

	L gindong in aprial and undergroundergang	
	I-girders in aerial and undergroundorgans	
	 Conducting tissuesystem: Xylem and itselements 	
	 Phloem and itselements 	
	> Types of VascularBundles.	
	Defence mechanism inplants:	
	Morphologicalarmatures	
	Anatomical (tylosis, gall, periderm,	
	abscission)	
1 C	Wood anatomy: Axial parenchyma &Rays	
	 Secretory and glandular tissue system -Glands, 	
	Digestive glands, Nectaries, Resin ducts and oils	
	ducts.	
Unit II	Plant Physiology :	15L
100	Structure of biomolecules	
1.00	Lipids: Structure and classification of lipids.	
10.000	Nomenclature of fatty acids and role of lipidic	
	compounds present in plants. Ultra-structure and	
	functions of Glyoxysomes and Peroxisomes.	
	Respiration:Ultra-Structure and functions of	
	Mitochondrion (membranes, cristae, F1 particles and	
	matrix). Aerobic: Glycolysis, TCA Cycle, ETS &	
1.1	Energetics of respiration; Anaerobicrespiration	
	Comparison of respiration and Photorespiration.	
Unit III	Environmental Botany	15L
	• Ecology of Mangroves: Growth, Maintenanceand	
	significance.	
	Ecological factors: Concept of environmental	
	factors. Soil as an edaphic factor, Soil	
	composition, types of soil, soil formation, soil	
	profile.	
	Community ecology- Characters of community -	
	Quantitative characters(Pyramids,Quadrats,	
	Line-transect) and Qualitative characters	
	(Whittaker's Classification, Raunkier's	
	Classification, Braun-Blanquet Classification)	
	Pollution: Definition and its types – Air pollution	
	and its effect on plants, Water pollution and its	
	effect on plants and Soil pollution and its effect on	
	plants.Current&ImportantPollutionepisodesof	
	the world & Metro cities of India (Mumbai; Delhi;	
	Kolkata & Chennai) etc.	
Additional Refe	erences:	
Fahn A	A., Plant anatomy, PergamonPress,1967	
	y B. P., Plant anatomy, S. Chand,2007	
	,Plantanatomy,JohnWiley&Sons,1953	
Roy P.	, Plant anatomy, New Central Book Agency,2006	

Freeman & Co., 4th edition,2005
Taiz L.and Zeiger E., Plant Physiology, Sinauer Associates inc.
Publishers,2010
Odum E.P., Fundamentals of Ecology, Thomson Brooks/Cole,2005
Kormandy E.J., Concepts of Ecology, Prentice Hall,1996
Santra S.C., Fundamentals of Ecology and Environmental Biology, New Central Book agency,2010
Reimold R.J and Queen W.H., Ecology of Halophytes, Academic Press, INC,1974
Shukla R.S. & Chandel P.S., A textbook of Plant Ecology, S. Chand & C. M. 1974

Course	PAPER III: PLANT TISSUE CULTURE, MOLECULAR BIOLOGY AND	
code:	RESEARCH METHODOLOGY	
SBOT 403	(Credits: 2 Lectures/Week:3)	
	Learning objectives:	
	The topic of plant tissue culture has been introduce	ed as
	a separate unit to study basic techniques in PTC.	
	students will be learning everything from layout of	
	to actually growing cultures via Micropropagation.	e
	will also study the commercial usage of tissue cu	ılture
	especially in cropimprovement.	
	Study the basic aspects and strategies involved in	gene
	cloning.	. .
	The research methodology unit will make the stud	
	understand the concept of research, its types a	nd a
0.5	detailed account of the researchdesign.	-to-rd
1.0	The publication basics will make the student unders	stand
	the structured writing of a report, referencingand plagiarism.	
	Learning outcomes:	
	The PTC unit will make the students aware of	the
	various techniques followed in setting up a lab, mak	
	medium, sterilising for aseptic conditions and va	_
1.1	types of culturing techniques. After studying the to	
14.1	students will also be well versed with taking the p	_
100	from lab to land and how <i>in vitro</i> propagation can improve	
	foodcrops.	
	The gene cloning unit will introduce students to the	
	fascinating topic on genetic engineering. They will	
	understand the strategies involved in gene cloning using	
	different types of vectors as well as the role played by	
	some important enzymes involved in recombinant DNA	
	technology.	
	The student will use the basics studied about resear	ch in
	their academics for conducting projects and present	
	them.	4 5 1
Unit I	Plant tissue Culture	15L
	Historical aspect of PTC- contribution of major workers	
	Layout of a PTCLab	
	Aseptictechniques	
	Nutritional components of tissue culturemedium	
	Concept oftotipotency	
	Stages of Micropropagation	
	Initiation and maintenance of callus,	
	organogenesis and multiple shootculture	
	Hardening	
	Applications of PTC in cropimprovement	

Unit II	Molecular Biology: Recombinant DNA technology	15L
	General account of Enzymes involved in Gene	101
	cloning:	
	Restriction enzymes: Types, Source, Mode of	
	action and uses.	
	Ligase enzyme: Source, Mode of action, uses and	
	methods of ligation involving Homopolymer tailing, Linkers,Bluntendandstickyendligation.)	
	Source, Mode of action, uses of following enzymes	
	in gene cloning: Polynucleotide kinase, Terminal	
	transferase, Reverse Transcriptase, S1 Nuclease,	
	Alkaline Phosphatase, different types of DNA	
	Polymerases	
	General account of vectors and Strategy of Gene	
	cloning using following different types of Vectors:	
C~~	Plasmid vectors (PBr322, PUC19)	
0.00	Ti Plasmid basedVectors	
	BacteriophageVectors	
	CosmidVectors	
	BAC and YACvectors	
Unit III	Research Methodology	15L
	• Meaning of Research: need and general objectives	
1.11	of research, significance of research (emphasis on	
	botany), criteria for goodresearch	
10.0	• Types of research: Types of research, Research	
	methods versusmethodology	
	• Research problem – definition, selection and	
	technique involved indefining a problem.	
	Plagiarism- types and consequences	
Additional Ref		
	B. R., Pasternack J. and Patten, C., Molecular Biotechn	
	iples and Applications of Recombinant DNA Technology	7 4th
	n , American Society of Microbiology, CBS Publishers,2007	
	ell P., I-Genetics: A Molecular Approach, Pearson/Benj	amın
	nings, 2nd Edition,2006.	
	vat,K.G.,PlantBiotechnology,SChand&CompanyLtd,2004	
_	B.D., Plant biotechnology, Kalyani Pub. 2006	ahing
	imuthu S., Plant Biotechnology, Oxford &Ibh Publis any Pvt Limited,2005	sining
1	s J. and Roberts L., Experiments in Plant Tissue Culture,	
	ition, Cambridge University Press,1995	
	lyan,PlantTissueculture,SChand&CompanyLtd,2008	
	uri, C.R., Research Methodology- Methods and Techniques,	
	vised Edition, New Age international publishers, 2004	
	M., Avoiding plagiarism, self-plagiarism, and other questional	able
0	appractices: Aguidetoethicalwriting. U.S. Departmentof	
	h & Human Services: Office of Research Integrity, 2011	
IIIait		

Semester IV – Practical

Course	Practical Paper I, II & III
Code:	(Credits:2.5 Practicals/Week:3)
SBOT4PR	Learning Objectives:
	The students will perform sectioning of fresh and
	preserved specimens of Bryophytes, Pteridophytes and
	Gymnosperms and observe microscopic details to
	understand their structuralvariations.
	The students will observe specimens to study floral
	morphology.
	The student will learn the technique of sectioning,
	staining and mounting of preserved and fresh plant
	materials to observe and study anatomical structures
pro-	including mechanical tissue systems, conducting
	tissues and types of vascularbundles.
	Technique of respiration will be actually demonstrated
	in germinating seeds to understand theprocess.
- U.S.	The students will study physico-chemical characters of
	soil to determine variouscharacters.
	The students will study various aseptic techniques to be followed in PTC. They will also culture explants for
1.1	callus and multiple shoot induction. Other culturing
	techniques will be studied viamicrophotographs.
1.1	The students will learn to solve givenstatistical
1.1	problems.
	Learning Outcomes:
	The students will now be able to study and interpret
	stagesinlifecyclesofAnthoceros,CycasandZamia.
	Study of morphological characters will help them to
	easily identify the fieldplants.
	Students will understand the use of anatomical
	variations to classifyplants.
	The study of soil parameters will help them to find
	solutions to problems encountered in cultivation of
	plants in different edaphic and climaticzones.
	They will be able to use their skill to construct gardens
	with necessary features and plants.
	The students will learn to use statistics and give
	statisticallycorrectdataofresultsthattheyinterpretto
	solve actual problems.1. Study of stages in the life cycle of <i>Anthoceros</i> from fresh/
	preserved material and permanentslides.
	2. Study of stages in the life cycle of <i>Equisetum</i> from fresh/
	preserved material and permanentslides.
	3. Study of stages in the life cycle of <i>Ophioglossum</i> from
	fresh/ preserved material and permanentslides.

4. Study of stages in the life cycle of <i>Cycas</i> from fresh/
preserved material and permanentslides.
5. Study of stages in the life cycle of <i>Zamia</i> from fresh/
preserved material and permanentslides.
6. Economic importance of Anthocerotae/ Pteropsida/
Sphenopsida/Cycadophyta
7. Study of one plant from each of the following
Angiospermfamilies
Sterculiaceae
Rutaceae
Myrtaceae
Asteraceae
Verbenaceae
Amaranthaceae
Arecaceae
Morphological peculiarities and economic importance of the
members of the above mentioned Angiosperm families
8. Study of normal secondary growth in the stem and root of
a Dicotyledonousplant 9. Types of mechanical tissues, mechanical tissue system in
aerial, undergroundorgans.
10.Study of morphological and anatomical structures involved in defence mechanism inplants
11. Study of conducting tissues- Xylem and phloem
elementsinGymnospermsandAngiospermsasseenin
L.S. and through maceration technique.
12. Study of different types of vascularbundles.
13. Application of wood anatomy in timberidentification.
14. Study of digestive glands; oil glands; Resin ducts; with
the help of temporary/ permanentpreparations.
15. Q_{10} -germinatingseedsusingPhenolredindicator
16. Estimation of reducing sugars by Dinitrosalicylic acid
method.
17.Determination of total carbohydrate by Anthrone
method.
18. Study of the working of the following Ecological
Instruments- Soil thermometer, Soil testing kit, Soil pH,
Windanemometer.
19. Mechanical analysis of soil by the sieve method & pH of
soil.
20 . Quantitative estimation of organic matter of the soil by
Walkley and Black's Rapid titrationmethod.
21. Study of vegetationby
list quadratmethod
Garmin'smethod
22. Study of LD_{50} using heavymetals.

23. Comparative account of dust load from leavesin
unpolluted and polluted areas.
24. Preparation of MS Medium via stock making
(Demonstration)
25. Culturing of explants for multiple shootinduction
26. Culturing of explants for callusinduction
27.Study of microphotographs of various types of cultures-
anther, pollen, meristem, shoot, root and embryoculture.
28. Identification of the cloning vectors – pBR322, pUC 19,
 Tiplasmid.
29. Chi squaretest
30. Calculation of coefficient of correlation
31. Research Projects/Literaturesurvey

JAI HIND COLLEGE, CHURCHGATE

S.Y.B.Sc. Botany Practical Paper

Semester IV Paper I

TotalMarks:50

Time: 2 hrs15min

(05)

Q. 1 Identify, classify and describe specimen 'A' & 'B'. Sketch neat and labeleddiagram. (14)

Q. 2 Identify, classify and describe specimen 'C'. Sketch neat and labeled diagram. (7)

Q. 3 Classify specimen 'D' upto its family giving reasons. Give floral formula.Sketch and label L.S. of Flower and T.S. ofovary. (9)

Q. 4 Identify and describe the specimen/ slide/ photomicrograph –, 'E' 'F' and'G'. (15)

Q.5Journal

@@@@@@@@@@@@@@

- A Bryophyta
- B Pteridophyta
- C –Gymnosperms

D - Sterculiaceae / Rutaceae / Myrtaceae / Asteraceae / Verbenaceae / Amaranthaceae /Arecaceae

E, F & G – Economic importance of Anthocerotae/ Pteropsida/ Sphenopsida/ Cycadophyta; Economic importance of families studied; any material not asked as table specimen.

JAI HIND COLLEGE, CHURCHGATE S.Y.B.Sc. Botany Practical Paper Semester IV Paper II

TotalMarks:50

Time: 2 hrs30min

Q. 1 (a) Make a temporary stained preparation of T.S. of specimen 'A' and comment on thesecondarygrowth. (07)

Q. 1 (b) Make a temporary stained preparation of T.S. of specimen 'B' and commentonthemechanicaltissuesystem./Maceratethegivenmaterial'B' and describetheconductingtissueseen. (05)

Q. 1 (c) Take a TS/LS of the given material 'C' and describe the secretary tissue. (04)

Q. 1(d) Perform TS/RLS/TLS on the given material 'D' to characterise
thewoodtype.(09)

Q. 2 Perform the Physiology experiment 'E' allotted to you. Write the principle, requirements. Record your observations and results.(08)

Q. 3 Perform the ecological experiment 'F' allotted to you. Write the principle, requirements. Record your observations and results.(08)

Q. 4 Identify and describe the specimen/ slide/ photograph – 'G', 'H' & 'I'

(09)

@@@@@@@@@@@@@

A – Dicot stem/ root

B – Mechanical tissue/ maceration of gymnosperms wood or angiosperms wood/secretory tissues

C – wood anatomy

 $D-Q_{10}$ with Phenol red indicator/Estimation of reducing sugars by DNSA/ Estimation of carbohydrates by Anthrone method

E – Mechanical analysis of soil and pH of Soil/ Organic matter estimation/ list quadrat method

F, G & H – Ecological Instruments/ Types of Vascular bundles/Garmin's instrument (in randomorder)

JAI HIND COLLEGE, CHURCHGATE

S.Y.B.Sc. Botany Practical Paper

Semester IV Paper III

TotalMarks:50

Time: 2 hrs15min

Q.1Performtheculturingtechniquesallottedtoyou. (09)

Q. 2 Perform Chi-square test OR Co-efficient of correlation using the given data 'B' and analyse the results.

Q. 3 Identify and describe the specimen / photograph 'C' and 'D'

(06)

(10)

Q. 4 Project submissionandpresentation.

(25)

A – Plant tissue culture experiment

B – Problems of Biostatistics

C – Artificial cloning vectors pBR 322/ pUC 18/ Ti – plasmid vector and microphotograph of PTC

Evaluation Scheme

[A] Evaluation scheme for Theorycourses

I. Continuous Assessment (C.A.) - 40Marks

- (i) C.A.-I: Test 20 Marks of 40 mins.duration
- (ii) C.A.-II: Test /Assignment/Project/ surprise class test 20 marks

II. Semester End Examination (SEE)- 60Marks

[B] Evaluation scheme for Practical courses (SEE – 50 marks) NOTE:

1. A minimum of TWO field excursions (with at least one beyond the limits of Mumbai) for habitat studies are compulsory. Field work of not less thaneight hours duration is equivalent to one period per week for a batch of fifteenstudents.

2. A candidate will be allowed to appear for the practical examinations only if he/she submits a certified journal of SYBSc Botany and the Field Report or a certificate from the Head of the Department/Institute to the effect that the candidate has completed the practical course of SYBSc Botany as perthe minimum requirements. In case of loss of a journal, a candidate must produce a certificate from the Head of the Department/ Institute that the practical for the academic year was completed by the student. However, such a candidate will be allowed to appear for the practical examination but themarksallottedforthejournalwillnotbegranted.

