
Academic Council 25/05/2011 Item No. 4.53

F.Y.B.Sc. Chemistry Syllabus Restructured for Credit Based and Grading System To be implemented from the Academic year 2011-2012

SEMESTER I

Course Code	Unit	Topics	Credits	L / Week
	Ι	Study Of States Of Matter		1
USCH101	II	Scope And Importance Of Inorganic Chemistry Periodic Table Concepts Of Qualitative Analysis	2	1
	III	Bonding And Structure Of Organic Compounds Nomenclature Of Organic Compounds		1
	Ι	Thermodynamics Presentation Of Experimental Data		1
USCH102	II	Chemical Bonding And Molecular Structure	2	1
	III	Mechanism Of Organic Reactions Alkanes And Cycloalkanes		1
USCHP1			2	6

SEMESTER II

Course Code	UNIT	Topics	Credits	L /Week
	Ι	Chemical Kinetics Photochemistry		1
USCH201	II	Chemistry of Coordination Compounds, Comparative Chemistry of Group 13 Elements	2	1
	III	Stereochemistry Of Organic Compounds Alkenes, Cycloalkenes, Alkadienes, and Alkynes		1
USCH202	Ι	Chemical Calculations Introduction To Molecular Spectroscopy		1
	II	Basic Bio Inorganic Chemistry Environmental Chemistry Comparative Chemistry Of Group 14 Elements	2	1
	III	Aromaticity and Aromatic Hydrocarbons Reactions Of Aliphatic Organic Compounds and their Interconversions		1
USCHP2			2	6

F.Y.B.Sc. Chemistry Syllabus modified for Credit System To be implemented from the Academic year 2011-2012

Semester I

Course Code	Credits	
	2 Credits	
USCH101	(45 lectures)	
Unit I :		15 Lectures
Study of States Of Matter :-		
Gases : Introduction, ideality and kinetic theorem	bry of gases (only postulates), gas	
laws, Maxwell's distribution of velocities (gra	aph & qualitative discussion), real	
gases, compressibility factor, Boyle tempera	ture, van der Waals equation of	
state, critical phenomena, liquefaction of gase	s based on Joule Thomson effect.	
Liquids: Introduction, study of viscosity and	its determination using Ostwald's	
viscometer, study of surface tension	and its determination using	
Stalagmometer.		
Solid : Introduction, amorphous and crystalling	ne solids, crystallography, Crystal	
systems, concept of space lattice and unit cell		
Unit II		15 Lectures
1) Scope and Importance of Inorganic Cher	mistry,	
2) Periodic Table and periodicity of prop	perties : Long form of periodic	
table, Atomic and ionic radii; Lionization	of atoms: (formation of cations	
and anions), Effective nuclear charges a	nd its calculation using Slater's	
rules; Electronegetivity and its determinat		
methods (numerical problems expected); Pe	olarizability (Fajan's rules)	
3) Concepts of Qualitative Analysis : Type		
affecting precipitation equlibria (solubility	y product) in qualitative analysis	
(Numerical problems expected), Common ion effect; pH Complexation;		
Ionic strength ; (uncommon ion effect), Oxidation states		
(Examples to illustrate the abovementioned factors may be selected form the		
schemes for qualitative analysis in the laboratory work)		
Unit III		15 Lectures
1) Bonding and Structure of Organic Com	pounds	
1.1 Allotropy of carbon: Structure and	properties of diamond, graphite,	
fullerenes, carbon nanotubes.		
1.2 Hybridization: sp ^{3,} sp ^{2,} sp hybridizatio	on of carbon and nitrogen; sp ³ and	
sp ² hybridizations of oxygen in Organ	nic compounds.	
1.3 Overlap of atomic orbitals: Overlaps of		
bonds, shapes of organic molecules.		
1.4 Electronic effects in organic molecule	s: Polarization or Inductive effect	
– Nature; polarity of a covalent bond		
properties of molecules, such as m	-	

	effect; Delocalized bonds - Resonance, drawing of resonance	
	structures of different conjugated systems, resonance energy and	
	stability of conjugated systems; Hyperconjugation.	
1.5	Bonds weaker than a convalent bond: Hydrogen bond - nature, effect	
	of on m.p./b.p., solubility in water; van der Waals forces.	
1.6	Structure of common functional groups: Geometry and electronic	
	structure in order to understand their reactivity.	
2) Non	nenclature of organic compounds	
2.1	Functional groups and types of organic compounds, basic rules of	
	IUPAC nomenclature.	
2.2	Nomenclature of mono- and bi-functional compounds on the basis of	
	priority order, pof the following classes of compounds: alkanes,	
	alkenes, alkynes, haloalkanes, alcohols, ethers, aldehydes, ketones,	
	carboxyclic ascids, carboxylic acid derivaties (acid halides, esters,	
	anhydrides, amides), nitro compounds, nitriles and amines; including	
	their cyclic analogues.	
2.3	Nomenclature of aromatic compounds: mono-, di-, and poly-	
	substituted benzenes, with not more than two functional groups.	
	Monosubstituted fused polycyclic arenas - naphthalence, anthracene,	
	and phenanthrene.	

Course Code Credits		
USCH102	2 Credits (45 lectures)	
 Unit I : Thermodynamics : First law of thermodynamics, internal energy, enthalpy, isothermal and adiabatic processes, P-V-T relation for adiabatic process, second law of thermodynamics, need for the law,, Carnot's cycle, mechanical efficiency, concept of entropy, physical significance of entropy, entropy changes accompanying change of state and transition, Helmholtz and Gibb's free energies, relation between them, criteria of spontaneity. Presentation Of Experimental Data : i) Graphical representation of experimental data: equation of straight line, slope and intercept and their significance. (with relevant examples) 		15 Lectures
ii) Significant figures: concept, rules and examples Unit II : Chemical Bonding and molecular structur Ionic Bond: Formation of ionic bond, lattice energy, sa cycle and Kapustinski's equation (Numerical Problem Covalent Bond:- Lewis electron dot structures; single bond Valence Bond theory :- Sigma and pi-bonding, Theory equivalence of contributing atomic orbital in following Energetics of hybridization:sp, sp ² , sp ³ , Types of hybridisation:sp, sp ² , sp ³ , Types of hybridisations like BeCl ₂ , BF ₃ , SiCl ₄ Shapes of Chemical species on the basis of V.S.E.P.R. ICl ₂ ⁻¹ , TeF ₅ ⁻¹ , PX ₃ (X=halides),	alvation energy, Bord-Haber s expected) and multiple bonding, coordinate v of hybridization, with respect to g examples: CH_4 , NH_3 and H_2O , idization:sp, sp^2 , sp^3 , with	15 Lectures
 Unit III : Mechanism of Organic Reactions Bondbreaking processes: Representation of eleccurved arrows, Homolytic and heterolytic fission to given atom. Formation, Structure an stability of carbocations, Types of reagents: Electrophiles and nucleop Bronsted and Lewis concepts, carbon acids; C basis of mechanisms. Study of mechanisms: (a) S_N1 and S_N2 reactions leaving group, solvent, nucleophile. (b) aldol and crossed aldol reactions of aldehydes and ket Alkanes and Cycloalkanes Omtrpdictopm: applications of alkanes and cycloalkanes up to 6 C atoms. Sources: Petroleum oil – Composition, ref hydrothermal, thermodynamics in the proce importance of methane. Physical properties Chemical properties: Combustion–alkanes as function for the proce importance of methane. 	ons, Assigning of formal charge , carbanions and carbon radicals. hiles; Acids and bases: Lowry- lassifications of reactions on the – Effect of structure of substrate, reaction – Base catalysed simple ones. loaikanes, general formula, lack strain–stability and reactivity of ining, cracking – thermal and ss, reformation; Natural gas – uel, heat of combustion, octance el related issues–depletion of adical halogenation–mechanism,	15 Lectures

Course Code	Credits
USCHP1	2 Credits
Practicals in Physical Chemistry	JL
1. Study of the acid catalysed hydrolysis of me	thyl acetate. (rate constant to be evaluated
graphically and from calculations)	
2. Study of the base catalysed hydrolysis (saponifi	ication) of ethyl acetate. (rate constant to be
evaluated graphically and from calculations)	
3. To determine the strength of commercial sample	
solution of succinic acid to be prepared, NaOH so	
4. Ostwald's viscometer-To determine the viscosity	of the given inquid.
Practicals in Inorganic Chemistry	
1. To study the effect of heat on a mixture of sodiu	um carbonate and bicarbonate with respect to
the calculation of	
a) Percentage composition of the mixture	
b) Atom efficiency of the reaction;	
2. Inorganic preparations:	
i) Aluminum composition of the mixture	
ii) Sodium thisulphate;	
3. Volumetric Analysis :-a) Determination of the number of electron	s required in a chemical reaction between
	inate tirimetrically (weighed sample of oxali
b) Determination of the strength of sodium ca	arbonate and sodium bicarbonate by titration
with standard acid solution using phenolphth	•
c) Determination of the volume strength of h	
standard potassium permanganate solution.	
4. Inorganic semi-micro qualitative analysis of samp	ple containing two anions and any four cation
from the groups given below:*	2
**Group A) Pb^{2+} , Cu^{2+} , Fe^{3+} , Ni^{2+} , Zn^{2+} , Ca^{2+}	$^{2+}, Mg^{2+}, NH4^{1+},$
Group B) NH_4^{1+} , K^{1+} , AI^{3+} , Cd^{2+} , Mn^{2+} , Ba Group C) K^{1+} , Fe^{3+} , Sr^{2+} , Cu^{2+} , Cr^{3+} , Ni^{2+} , A	A^{3+} M 2^{-}
- ·	•
Anions: CO32-, SO42-, NO31-, Cl1-, Br1-, I1-, Com * Minimum two mixtures belonging to each group sh	
** Sulphide in any from should not be used for preci	

Semester II

Course Code	Credits	
USCH201	2 Credits (45 lectures)	
Unit I : CHEMICAL KINETICS		15 Lectures
Rate of reaction, definition of rate constant, m	neasurement of reaction rates,	
order and molecularity, integrated rate equation	ons for zero, first and second	
order reactions (for second order reactions on	ly a=b to be considered), kinetic	
characteristics of first and second order reacti	ons, pseudo first order reactions.	
Methods of determining order of reaction by		
a) Integration method b) graphical r		
	isolation method.	
Effect of temperature on rate of a reaction, ter	nperature coefficient, Arrehenius	
equation.		
Catalysis characteristics of catalysed reactions	s, classification & examples.	
PHOTOCHEMISTRY		
Laws of photochemistry, photon yield (quanti		
primary and secondary reactions, reasons for	high and law quantum yield,	
study of photochemical reaction:		
i)Reaction between hydrogen and chlorine, ii)		
Photo sensitizers and photosensitized reaction	s, photochemical smog, ozone	
depletion, concept of flash photolysis.		
Unit II		15 Lectures
1. Chemistry of Coordination compounds		
1.1 Distinction between double salts a	nd coordination compounds;	
1.2 Effective atomic number rule		
1.3 IUPAC nomenclature:		
1.4 Terms involved in coordination ch		
1.5 Experimental evidences of coordinate bond formation;		
1.6 Werner's theory of coordination compounds;		
1.7 Isomerism in coordination compo	unds	
1.7.1 Ionisation isomerism;		
1.7.2 Hydrate isomerism;		
1.7.3 Linkage isomerism;		
1.7.4 Coordination position isomer		
1.7.5 Stereoisomerism-geometrical and optical isomerism, with		
special reference to coordination Number 4 and 6		
1.8 Application of coordination compo		
2. Comparative chemistry of group 13 elements:-		
2.1 Trends in metallic character, oxidation states, melting and boiling		
points I pair effect		
2.2 Structures of electron deficient con	npounds with reference to boron	
hydrides;	- h-1:d:d 1 11 1	
2.3 Chemistry of aluminum compound	s: nandes, oxides and alkyls	

Unit III		15 Lectures
	emistry of Organic Compounds	
	Isomerism – Types of isomerism : Structural isomerism	
	(chain, position and functional) and Stereoisomerism.	
1.2	Chirality : Configuration, chirality and enantiomers,	
	stereogenic/chiral centre, asymmetric carbon atom, Representation of	
	configuration by "flying wedge formula" and projection formulate –	
	Fischer, Newman and Sawhorse. The interconversion of the formulae.	
1.3	Stereochemistry of carbon compounds with one, and two similar and	
	dissimilar asymmetric carbon atoms; enantioners, diastereomers, and	
	racemic mixtures and their properties, threo, erythro and meso-	
	isomers.	
	Diastereomerism (Geometrical isomerism) due to restricted rotation	
	around cabon-carbon double bond.	
	Conformation: Conformations of ethane. Difference between	
	configuration and conformation.	
Allzon	es, Cycloalkenes, Alkadiences, and Alkynes	
2.1	Introduction: Concept of elements of unsaturation; applications of	
2.1	alkenes, cuclolkenes, alkadiences and alkynes. Olefin	
	polymerization, heat of hydrogenation and stability.	
2.2	Preparation of alkenes and cycloalkenes (up to 6 carbon atoms):	
2.2	Dehydration of alcohols, Dehydrohalogenation of haloalkenes – $E1$	
	and E2 mechanisms.	
2.3	Reaction of alkenes and cycloalkenes (up to 6 carbon atoms):	
2.5	Hydrogenation, epoxidation, permanganate oxidation, ozonolysis,	
	halogenations, addition of HX – Markovnikov's and anti –	
	Markovnikov's additions (with mechanisms) formation of	
	halohydrins, hydroboration- oxidation	
2.4	Alkadienes: Types of alkadienes and their stabilities – cumulated,	
	isolated, conjugated; Reactions of conjugated dienes $-1,2$ - and $1,4$ -	
	additions, Diels-Alder reaction.	
2.5	Preparation of alkenes: Dehydrohalogenation of vicinal dihalides	
	and haloalkenes, from metal carbides.	
2.6	Reaction of alkynes: Hydration, Addition of HX, selective	
	hydrogenation to cis –and trans-alkenes, acidity of terminal alkynes,	
	preparation of metal acetylides and their alkylation.	

Course Code C		
USCH202	2 Credits	
(45 lectures)		
Unit I :		15 Lectures
Chemical Calculations:-		
Methods of expressing concentration of		
molality, mole fraction, formality, dilutio		
between different concentration units, conce	pt of milliequivalents, millimols,	
ppm and ppb.		
Primary and secondary standards, preparation		
calculation of concentration of commercial sa	imples of actus and bases like Use	
of computers in chemical calculations. Introduction To Molecular Spectroscopy		
Nature of electromagnetic radiation, interaction	on of emr with matter absorption	
emission, florescence and scattering, Energy		
atoms and molecules. Types of spectrosco		
spectrum and different types of spectroscopy.		
spectroscopic techniques. (qualitative discus		
tabular format)		
Unit II :		15 Lectures
1. Basic Bioinorganic Chemistry- Introdu	ction, essential and non-essential	
elements in biological systems; role of m		
Cu in biological systems;		
2. Environmental Chemistry –		
2.1 Study of various gaseous pollutants s	such as oxides of nitrogen, carbon	
and sulphur with respect to i) source	es of emission; ii) fate; iii) health	
hazards and iv) control measures;		
2.2 Green House effect, Ozone layer depl		
3. Comparative Chemistry of group-14 ele		
3.1 Trends in metallic character, oxida	ation states, melting and boiling	
points inert pair effect;		
3.2 Catenation and allotropy with specia	al reference to carbon (to include	
study of fullerenes):		
3.3 Chemistry of silicon with special ref		
zone refining and single crystal metho 3.4 Introduction of silicones with referen		
their uses.	te to memous or preparation and	
Unit III:		15 Lectures
1. Aromaticity and Aromatic Hydrocarbons		
1.1 Aromaticity: Characteristic proper	rties of aromatics compounds.	
Hucker's rule, aromaticity and antiar		
1.2 Aromatic hydrocarbons: (a) Benzeno		
naphthalene, antnracene, phenanthre	-	
Cyclopropenium, cyclopentadienide,		
1.3 Antiaromatic hydrocarbons: Cyclobu		
2. Reactions of aliphatic organic compounds	and their interconversions	
2.1 Reactions of Alkyl halides with : A		
(dehydrohalogeneation) Potassium cy	yanide, acid. Conversion of alkyl	

cyanide further to primary amine and carboxylic acid, Ammonia,	
Sliver salt of carboxylic acid, Sodium Alkoxide, Formation of	
Grignard Reagent, Wurtz reaction.	
2.2 Reactions of Alcohols with : Sodium Metal, HX, PCI3, PCI5, SOCI2,	
Dehydration, Oxidation of primary, secondary and tertiary alcohols.	
2.3 Reactions of Aldehydes and Ketones:	
2.3.1 Addition to carbonyl compounds : - i) HCN ii) Grignard	
Reagent. Condensation reaction with hydroxylamine.	
2.3.2 Aldol Condensation.	
2.3.3 Reduction of Aldehydes and Ketones:- i) Catalutic Reduction ii)	
Clemenson's Reduction. iii) Reduction with LiAIH4 and	
NaBH4, iv) Wolff-Kishner reduction.	
2.3.4 Haloform Reaction.	
2.4 Reactions of Acids, Esters and Amides:	
2.4.1 Acids: Salt formation, Anhydride formation, Amide formation,	
Acid halide formation, Ester formation, Formation of alkenes.	
2.4.2 Hdrolysis of Esters with acids and alkalies, Reaction of esters	
with Grignard Reagent, Hydrolysis of amides, Reduction of	
amides, Hoffmann bromanide reaction.	
2.5 Reactions of Amines:	
2.5.1 Formation of amines from – nitrolkanes, oximes	
2.5.2 Acetylation of amines with acetic anhydride and acetyl chloride.	
Action of nitrous acid on primary, secondary and tertiary amines.	
Methylation of primary, secondary and tertiary amines, yielding	
quaternary ammonium salts; Hoffmann elimination.	
······································	1

Note : Each reaction should be studied with respect to compounds with us to six carbon atoms. Based on these and the reactions of alkanes, alkenes and alkynes, multistep synthesis of compounds having one functional group are expected; the number of carbon atoms in each being not more than six. No mechanisms are expected.

Course Code	Credits	
USCHP2	2 Credits	
(1) Purification of solid compounds by crystallization from water: Quantity of compound -		
about 1 g; Quality and quantity of the crystalliz	zed compound to be given credit (minimum 6	
compounds to be given).		
(2) Determination of m.p. and b.p. of pure compou	inds and mixed melting point technique	
(minimum 6 compounds)		
(3) Characterization of Organic Compound (by mi	croscale techniques)	
(a) An organic compound belonging to any of	the following classes and containing only	
one functional group to be characterized thr	rough the following tests.	
(b) Tests: Preliminary observations, solubility	profile, elemental analysis, functional group	
identification, m.p./b.p		
(c) <u>Types of compounds:</u> Carboxylic acids, phe	enols, aldehydes and ketones, alcohols,	
esters, amines, amides, aromatic nitro comp	oounds, halhydrocarbons, hydrocarbons.	
(d) Quantity of compound to be given: About 1	.0g/2.0ml	
(e) At least one compound from each type show	ald be given for practice, and a total of	
minimum 12 compounds should be characted	erized during the course.	
(f) It is expected that affordable compounds from	om different types be given to the students	
for characterization, without keeping any sp	becific list of compounds in focus, so that the	
students are expected to be confident in the	methods of analysis of any unknown	
compound.		
Note : The theory behind the experiments is expected	at the time of viva.	

Scheme of Examination:

The performance of the learners shall be evaluated into two parts. The learner's performance shall be assessed by Internal Assessment with 40% marks in the first part & by conducting the Semester End Examinations with 60% marks in the second part.

The Course having Practical training will have Practical Examination for 50 marks at the end of Semester, out of which 30 marks for the Practical task assigned at the time of examination. The 20 marks are allotted as Internal Assessment.

The allocation of marks for the Internal Assessment and Semester End Examinations are as shown below:-

Internal Assessment: It is defined as the assessment of the learners on the basis of continuous evaluation as envisaged in the Credit based system by way of participation of learners in various academic and correlated activities in the given semester of the progamme.

Semester End Assessment : It is defined as the assessment of the learners on the basis of Performance in the semester end Theory/ written/ Practical examination.

Interna	Assessment - 40%	40 marks.
a) Theory	40 marks
Sr No	Evaluation type	Marks
1	Two Assignments/Case study/Project	20
2	One class Test (multiple choice questions objective)	10
3	Active participation in routine class instructional deliveries(case studies/ seminars//presentation)	05
4	Overall conduct as a responsible student, manners, skill in articulation, leadership qualities demonstrated through organizing co-curricular activities, etc.	
b) Practicals	20 marks
Sr No	Evaluation type	Marks
1	Two best practicals	10
2	Journal	05
3	Viva	05

Modality of Assessment :

B) External examination - 60 % Semester End Theory Assessment - 60%

60 marks

- i. Duration These examinations shall be of two hours duration.
- ii. Theory question paper pattern :-
- 1. There shall be four questions each of 15 marks. On each unit there will be one question & fourth one will be based on entire syllabus.
- 2. All questions shall be compulsory with internal choice within the questions. Each question will be of 20 to 23 marks with options.
- Questions may be sub divided into sub questions a, b, c, d & e only & the allocation of marks depends on the weightage of the topic.
 Practical External Assessment 30 marks
 - 12